1,455
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

Discovery of a new class of triazole based inhibitors of acetyl transferase KAT2A

, , , ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1987-1994 | Received 26 May 2022, Accepted 28 Jun 2022, Published online: 25 Jul 2022

References

  • Angell YL, Burgess K. Peptidomimetics via copper-catalyzed azide–alkyne cycloadditions. Chem Soc Rev 2007;36:1674–89.
  • Kharb R, Sharma PC, Yar MS, et al. Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 2011;26:1–21.
  • Schulze B, Schubert US. Beyond click chemistry-supramolecular interactions of 1,2,3-triazoles. Chem Soc Rev 2014;43:2522–71.
  • Palmer MH, Parsons S. 4-Methyl-1,2,4-Triazole and 1-Methyl-Tetrazole. Acta Crystallogr Sect C Cryst Struct Commun 1996;52:2818–22.
  • Sheremet EA, Tomanov RI, Trukhin EV, Berestovitskaya VM. Synthesis of 4-aryl-5-nitro-1,2,3-triazoles. Russ J Org Chem 2004;40:594–5.
  • Hafez HN, Abbas HAS, El-Gazzar ARBA. Synthesis and evaluation of analgesic, anti-inflammatory and ulcerogenic activities of some triazolo- and 2-pyrazolyl-pyrido[2,3-d]-pyrimidines. Acta Pharm 2008;58:359–78.
  • Liu K, Shi W, Cheng P. The coordination chemistry of Zn(II), Cd(II) and Hg(II) complexes with 1,2,4-triazole derivatives. Dalton Trans 2011;40:8475–90.
  • Passannanti A, Diana P, Barraja P, et al. Pyrrolo[2,3-d][1,2,3]triazoles as potential antineoplastic agents. Heterocycles 1998;48:1229–35.
  • Johns BA, Weatherhead JG, Allen SH, et al. The use of oxadiazole and triazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 1: establishing the pharmacophore. Bioorg Med Chem Lett 2009;19:1802–6.
  • Shalini K, Kumar N, Drabu S, Sharma PK. Advances in synthetic approach to and antifungal activity of triazoles. Beilstein J Org Chem 2011;7:668–77.
  • Lindstedt R, Ruggiero V, Alessio VD, et al. Inhibits T cell activation by reducing Nfat nuclear residency. Int J Immunopathol Pharmacol 2009;22:29–42.
  • Pacifico R, Destro D, Gillick-Healy MW, et al. Preparation of Acidic 5-Hydroxy-1,2,3-triazoles via the Cycloaddition of Aryl Azides with β-Ketoesters. J Org Chem 2021;86:11354–60.
  • Hamada Y. Role of pyridines in medicinal chemistry and design of BACE1 inhibitors possessing a pyridine scaffold. In: Pandey PP, ed. Pyridine. London, UK: IntechOpen; 2018. DOI:10.5772/intechopen.74719
  • Asif M. Biological potential and chemical properties of pyridine and piperidine fused pyridazine compounds: pyridopyridazine a versatile nucleus. Asian J Pharm Sci 2016;1:29.
  • Nobeli I, Price SL, Lommerse JPM, Taylor R. Hydrogen bonding properties of oxygen and nitrogen acceptors in aromatic heterocycles. J Comput Chem 1997;18:2060–74.
  • Laurence C, Brameld KA, Graton J, et al. The pKBHX database: toward a better understanding of hydrogen-bond basicity for medicinal chemists. J Med Chem 2009;52:4073–86.
  • Kenny PW, Montanari CA, Prokopczyk IM, et al. Hydrogen bond basicity prediction for medicinal chemistry design. J Med Chem 2016;59:4278–88.
  • Eicher T, Hauptmann S, Speicher A. The chemistry of heterocycles: structures, reactions, synthesis, and applications. Weinheim, Germany: John Wiley & Sons; 2013.
  • Arnold DS, Plank CA, Erickson EE, Pike FP. Solubility of benzene in water. J Chem Eng Data 1958;3:253–6.
  • Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 2000;43:3714–7.
  • Hohenstein EG, Sherrill CD. Effects of heteroatoms on aromatic π-π interactions: benzene-pyridine and pyridine dimer. J Phys Chem A 2009;113:878–86.
  • Huber RG, Margreiter MA, Fuchs JE, et al. Heteroaromatic π-stacking energy landscapes. J Chem Inf Model 2014;54:1371–9.
  • Vitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem 2014;57:10257–74.
  • Hsu KHK. Thirty years after isoniazid: its impact on tuberculosis in children and adolescents. JAMA 1984;251:1283–5.
  • Pym AS, Domenech P, Honoré N, et al. Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosis. Mol. Microbiol 2001;40:879–89.
  • Morlock GP, Metchock B, Sikes D, et al. ethA, inhA, and katG Loci of ethionamide-resistant clinical mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 2003;47:3799–805.
  • Wang Z, Vince R. Design and synthesis of dual inhibitors of HIV reverse transcriptase and integrase: introducing a diketoacid functionality into delavirdine. Bioorg Med Chem 2008;16:3587–95.
  • Wang L, Kumar R, Pavlov PF, Winblad B. Small molecule therapeutics for tauopathy in Alzheimer’s disease: walking on the path of most resistance. Eur J Med Chem 2021;209:112915.
  • Minami J, Numabe A, Andoh N, et al. Comparison of once-daily nifedipine controlled-release with twice-daily nifedipine retard in the treatment of essential hypertension. Br J Clin Pharmacol 2004;57:632–9.
  • Wang JG, Kario K, Lau T, et al. Asian Pacific Heart Association. Use of dihydropyridine calcium channel blockers in the management of hypertension in Eastern Asians: a scientific statement from the Asian Pacific Heart Association. Hypertens Res 2011;34:423–30.
  • Voss AK, Thomas T. Histone lysine and genomic targets of histone acetyltransferases in mammals. BioEssays 2018;40:1800078–16.
  • Ud-Din AIMS, Tikhomirova A, Roujeinikova A. Structure and functional diversity of GCN5-related n-acetyltransferases (GNAT). Int J Mol Sci 2016;17:1018.
  • Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta Gene Regul Mech 2009;1789:45–57.
  • Chen L, Wei T, Si X, et al. Lysine acetyltransferase GCN5 potentiates the growth of non-small cell lung cancer via promotion of E2F1, cyclin D1, and cyclin E1 expression. J Biol Chem 2013;288:14510–21.
  • Yin YW, Jin HJ, Zhao W, et al. The histone acetyltransferase GCN5 expression is elevated and regulated by c-Myc and E2F1 transcription factors in human colon cancer. Gene Expr 2015;16:187–96.
  • Dekker FJ, Van Den Bosch T, Martin NI. Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov Today 2014;19:654–60.
  • Sun C, Wang M, Liu X, et al. PCAF improves glucose homeostasis by suppressing the gluconeogenic activity of PGC-1α. Cell Reports 2014;9:2250–62.
  • Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK. Small molecule modulators of histone acetyltransferase p300. J Biol Chem 2003;278:19134–40.
  • Arif M, Pradhan SK, Thanuja GR, et al. Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J Med Chem 2009;52:267–77.
  • Balasubramanyam K, Altaf M, Varier RA, et al. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 2004;279:33716–26.
  • Balasubramanyam K, Varier RA, Altaf M, et al. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 2004;279:51163–71.
  • Chimenti F, Bizzarri B, Maccioni E, et al. Novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4’ chlorophenyl)thiazol-2-yl)hydrazone. J Med Chem 2009;52:530–6.
  • Ghizzoni M, Haisma HJ, Dekker FJ. Reactivity of isothiazolones and isothiazolone-1-oxides in the inhibition of the PCAF histone acetyltransferase. Eur J Med Chem 2009;44:4855–61.
  • Alvarez-Sánchez R, Basketter D, Pease C, Lepoittevin JP. Studies of chemical selectivity of hapten, reactivity, and skin sensitization potency. Synthesis and studies on the reactivity toward model nucleophiles of the 13C-labeled skin sensitizers, 5-chloro-2-methylisothiazol-3-one (MCI) and 2-methylisothiazol. Chem Res Toxicol 2003;16:627–36.
  • Furdas SD, Shekfeh S, Bissinger EM, et al. Synthesis and biological testing of novel pyridoisothiazolones as histone acetyltransferase inhibitors. Bioorg Med Chem 2011;19:3678–89.
  • Siragusa L, Cross S, Baroni M, et al. BioGPS: navigating biological space to predict polypharmacology, off-targeting, and selectivity. Proteins 2015;83:517–32.
  • Baroni M, Cruciani G, Sciabola S, et al. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application. J Chem Inf Model 2007;47:279–94.
  • Davies JP, Cotter PD, Ioannou YA. Cloning and mapping of human Rab7 and Rab9 cDNA sequences and identification of a Rab9 pseudogene. Genomics 1997;41:131–4.
  • Hinds TD, Sánchez ER. Protein phosphatase 5. Int J Biochem Cell Biol 2008;40:2358–62.
  • Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 2002;41:2596–9.
  • Chaganti LK, Venkatakrishnan N, Bose K. An efficient method for FITC labelling of proteins using tandem affinity purification. Biosci Rep 2018;38:1–8.
  • https://westbioscience.com/acetyltransferase/assay-kit/gcn5-fluorogenic-assay-kit-3372.html
  • Kikuchi H, Kuribayashi F, Kiwaki N, et al. GCN5 regulates the superoxide-generating system in leukocytes via controlling Gp91-phox gene expression. J Immunol 2011;186:3015–22.