2,075
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Arctigenin: pharmacology, total synthesis, and progress in structure modification

, , , , , , & show all
Pages 2452-2477 | Received 23 Apr 2022, Accepted 15 Aug 2022, Published online: 12 Sep 2022

References

  • Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discovery 2015;14:111–29.
  • Chen HJ, Gao Y, Wang AL, et al. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. Eur J Med Chem 2015;92:648–55.
  • Chen HJ, Gao Y, Wu JL, et al. Exploring therapeutic potentials of baicalin and its aglycone baicalein for hematological malignancies. Cancer Letters 2014;354:5–11.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020;83:770–803.
  • Vesaghhamedani S, Ebrahimzadeh F, Najafi E, et al. Xanthohumol: an underestimated, while potent and promising chemotherapeutic agent in cancer treatment. Prog Biophys Mol Biol 2022;172:3–14.
  • Gowhari Shabgah A, Hejri Zarifi S, Mazloumi Kiapey SS, et al. Curcumin and cancer; are long non-coding RNAs missing link. Prog Biophys Mol Biol 2021;164:63–71.
  • Batool A, Miana GA, Alam M, et al. Bioassay-guided fractionation and isolation of Arctigenin from Saussurea heteromalla for in vitro and in silico cytotoxic activity against HeLa cells. Physiol Mol Plant Pathol 2022;117:101749.
  • Ferracane R, Graziani G, Gallo M, et al. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J Pharm Biomed Anal 2010;51:399–404.
  • Ichikawa K, Kinoshita T, Nishibe S, et al. The Ca2+ antagonist activity of lignans. Chem Pharm Bull 1986;34:3514–7.
  • Su S, Wink M. Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans. Phytochemistry 2015;117:340–50.
  • Yong M, Kun G, Qiu MH. A new lignan from the seeds of Arctium lappa. J Asian Nat Prod Res 2007;9:541–4.
  • Wang HY, Yang JS. Studies on the chemical constituents of Arctium lappa L. Yao Xue Xue Bao 1993;28:911–7.
  • Suzuki S, Umezawa T, Shimada M. Stereochemical difference in secoisolariciresinol formation between cell-free extracts from petioles and from ripening seeds of Arctium lappa L. Biosci Biotechnol Biochem 1998;62:1468–70.
  • Ichihara A, Oda K, Numata Y, Sakamura S. and,. Lappaol A and B, novel lignans from Arctium lappa L. Tetrahedron Lett 1976;17:3961–4.
  • Tezuka Y, Yamamoto K, Awale S, et al. Anti-austeric activity of phenolic constituents of seeds of Arctium lappa. Nat Prod Commun 2013;8:463–6.
  • Park SY, Hong SS, Han XH, et al. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production. Chem Pharm Bull 2007;55:150–2.
  • Ichihara A, Numata Y, Kanai S, et al. New sesquilignans from Arctium lappa L. The structure of lappaol C, D and E. Agric Biol Chem 1977;41:1813–4.
  • Ichihara A, Kanai S, Nakamura Y, et al. Structures of lappaol F and H, dilignans from Arctium lappa L. Tetrahedron Lett 1978;19:3035–8.
  • Han BH, Kang YH, Yang HO, et al. A butyrolactone lignan dimer from Arctium lappa. Phytochemistry 1994;37:1161–3.
  • Wang HY. Yang JS. Neoarctin A from Arctium lappa L. Chin Chem Lett 1995;6:217–20.
  • Yang YN, Zhang F, Feng ZM, et al. Two new neolignan glucosides from Arctii Fructus. J Asian Nat Prod Res 2012;14:981–5.
  • Zhao CX, Zeng YX, Wan MZ, et al. Comparative analysis of essential oils from eight herbal medicines with pungent flavor and cool nature by GC-MS and chemometric resolution methods. J Sep Sci 2009;32:660–70.
  • Naya K, Tsuji K, Haku U. The constituents of Arctium Lappa L. Lappa. Chem Lett 1972;1:235–6.
  • Beard JS, Lofgren GE. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and Amphibolites at 1, 3, and 6.9 kb. J Petrol 1991;32:365–401.
  • Iochkova I, Mladenova K, Zakharieva E. Triterpene alcohols and sterols of Arctium lappa. Dokl Bolg Akad Nauk 1989;42:43–5.
  • Wu SH, Du JH, Abula NB. Research progress of effects of Arctium lappa L. Zhonghua Zhongyiyao Zazhi 2017;32:3093–5.
  • Wang Y, Ma W. Research progress on the chemical constituents of Arctium lappa L. and its protective effects on cardiovascular disease. Huaxia Yixue 2020;33:184–7.
  • Liu H, Zhang Y, Sun Y, et al. Determination of the major constituents in fruit of Arctium lappa L. by matrix solid-phase dispersion extraction coupled with HPLC separation and fluorescence detection. J Chromatogr B 2010;878:2707–11.
  • Hirose M, Yamaguchi T, Lin C, et al. Effects of arctiin on PhIP-induced mammary, colon and pancreatic carcinogenesis in female Sprague-Dawley rats and MeIQx-induced hepatocarcinogenesis in male F344 rats. Cancer Lett 2000;155:79–88.
  • Moritani S, Nomura M, Takeda Y, et al. Cytotoxic components of Bardanae Fructus (Goboshi). Biol Pharm Bull 1996;19:1515–7.
  • Jeong JB, Hong SC, Jeong HJ, et al. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells. Int Immunopharmacol 2011;11:1573–7.
  • Takasaki M, Konoshima T, Komatsu K, et al. Anti-tumor-promoting activity of lignans from the aerial part of Saussurea medusa. Cancer Lett 2000;158:53–9.
  • Hyam SR, Lee I-A, Gu W, et al. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages. Eur J Pharmacol 2013;708:21–9.
  • Gu Y, Scheuer C, Feng D, et al. Inhibition of angiogenesis: a novel antitumor mechanism of the herbal compound arctigenin. Anti-Cancer Drugs 2013;24:781–91.
  • Hausott B, Greger H, Marian B. Naturally occurring lignans efficiently induce apoptosis in colorectal tumor cells. J Cancer Res Clin Oncol 2003;129:569–76.
  • Brecht K, Riebel V, Couttet P, et al. Mechanistic insights into selective killing of OXPHOS-dependent cancer cells by arctigenin. Toxicol In Vitro 2017;40:55–65.
  • Awale S, Lu J, Kalauni SK, et al. Identification of arctigenin as an antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation. Cancer Res 2006;66:1751–7.
  • Yang S, Ma J, Xiao J, et al. Arctigenin anti-tumor activity in bladder cancer T24 cell line through induction of cell-cycle arrest and apoptosis. Anat Rec 2012;295:1260–6.
  • Lee DY, Song MC, Yoo KH, et al. Lignans from the fruits of Cornus kousa Burg. and their cytotoxic effects on human cancer cell lines. Arch Pharmacal Res 2007;30:402–7.
  • Yao X, Li G, Lu C, et al. Arctigenin promotes degradation of inducible nitric oxide synthase through CHIP-associated proteasome pathway and suppresses its enzyme activity. Int Immunopharmacol 2012;14:138–44.
  • Lu Z, Cao S, Zhou H, et al. Mechanism of arctigenin-induced specific cytotoxicity against human hepatocellular carcinoma cell lines: Hep G2 and SMMC7721. PLoS One 2015;10:e0125727/1–e0125727/16.
  • Jiang X, Zeng L, Huang J, et al. Arctigenin, a natural lignan compound, induces apoptotic death of hepatocellular carcinoma cells via suppression of PI3-K/Akt signaling. J Biochem Mol Toxicol 2015;29:458–64.
  • Naoe A, Tsuchiya T, Kondo Y, et al. Arctigenin induces apoptosis in human hepatoblastoma cells. Pediatr Surg Int 2019;35:723–8.
  • Han YH, Kee JY, Kim DS, et al. Arctigenin inhibits lung metastasis of colorectal cancer by regulating cell viability and metastatic phenotypes. Molecules 2016;21:1135–/12.
  • Yoo JH, Lee HJ, Kang K, et al. Lignans inhibit cell growth via regulation of Wnt/β-catenin signaling. Food Chem Toxicol 2010;48:2247–52.
  • Zhang S, Li J, Song S, et al. Integrated in silico and experimental methods revealed that Arctigenin inhibited angiogenesis and HCT116 cell migration and invasion through regulating the H1F4A and Wnt/β-catenin pathway. Mol Biosyst 2015;11:2878–84.
  • Wang P, Solorzano W, Diaz T, et al. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo. Clin Nutr Exp 2017;13:1–11.
  • Susanti S, Iwasaki H, Inafuku M, et al. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines. Phytomedicine 2013;21:39–46.
  • Maxwell T, Lee KS, Kim S, et al. Arctigenin inhibits the activation of the mTOR pathway, resulting in autophagic cell death and decreased ER expression in ER-positive human breast cancer cells. Int J Oncol 2018;52:1339–49.
  • Maxwell T, Chun SY, Lee KS, et al. The anti-metastatic effects of the phytoestrogen arctigenin on human breast cancer cell lines regardless of the status of ER expression. Int J Oncol 2017;50:727–35.
  • Hirano T, Gotoh M, Oka K. K Natural flavonoids and lignans are potent cytostatic agents against human leukemic HL-60 cells. Life Sci 1994;55:1061–9.
  • Gao Q, Yang M, Zuo Z. Z Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol Sin 2018;39:787–801.
  • Cho JY, Kim AR, Yoo ES, et al. Immunomodulatory effect of arctigenin, a lignan compound, on tumour necrosis factor-alpha and nitric oxide production, and lymphocyte proliferation. J Pharm Pharmacol 1999;51:1267–73.
  • Kim A-R, Kim HS, Lee JM, et al. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages. Eur J Pharmacol 2012;682:29–36.
  • Zhao F, Wang L, Liu K. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway. J Ethnopharmacol 2009;122:457–62.
  • Cho MK, Jang YP, Kim YC, et al. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK inhibition: the role in TNF-α inhibition. Int Immunopharmacol 2004;4:1419–29.
  • Kou X, Qi S, Dai W, et al. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway. Int Immunopharmacol 2011;11:1095–102.
  • Lee JY, Cho BJ, Park TW, et al. Dibenzylbutyrolactone lignans from Forsythia koreana fruits attenuate lipopolysaccharide-induced inducible nitric oxide synthetase and cyclooxygenase-2 expressions through activation of nuclear factor-κB and mitogen-activated protein kinase in RAW264.7 cells. Biol Pharm Bull 2010;33:1847–53.
  • Cho MK, Park JW, Jang YP, et al. Potent inhibition of lipopolysaccharide-inducible nitric oxide synthase expression by dibenzylbutyrolactone lignans through inhibition of IκBα phosphorylation and of p65 nuclear translocation in macrophages. Int Immunopharmacol 2002;2:105–16.
  • Shi XB, Sun HZ, Zhou D, et al. Arctigenin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Rats. Inflammation 2015;38:623–31.
  • Zhang WZ, Jiang ZK, He BX, et al. Arctigenin protects against lipopolysaccharide-induced pulmonary oxidative stress and inflammation in a mouse model via suppression of MAPK, HO-1, and iNOS signaling. Inflammation 2015;38:1406–14.
  • Zhou B, Weng G, Huang Z, et al. Arctiin prevents LPS-induced acute lung injury via inhibition of PI3K/AKT signaling pathway in mice. Inflammation 2018;41:2129–35.
  • Cheng X, Wang H, Wang Y, et al. Arctigenin protects against liver injury from acute hepatitis by suppressing immune cells in mice. Biomed Pharmacother 2018;102:464–71.
  • Wu X, Yang Y, Dou Y, et al. Arctigenin but not arctiin acts as the major effective constituent of Arctium lappa L. fruit for attenuating colonic inflammatory response induced by dextran sulfate sodium in mice. Int Immunopharmacol 2014;23:505–15.
  • Li XM, Miao Y, Su QY, et al. Gastroprotective effects of arctigenin of Arctium lappa L. on a rat model of gastric ulcers. Biomed Rep 2016;5:589–94.
  • Wu X, Dou Y, Yang Y, et al. Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway. Biochem Pharmacol (Amsterdam, Neth) 2015;96:323–36.
  • Vlietinck AJ, De Bruyne T, Apers S, et al. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Med 1998;64:97–109.
  • Schröder HC, Merz H, Steffen R, et al. Differential in vitro anti-HIV activity of natural lignans. Z Naturforsch, C: Biosci 1990;45:1215–21.
  • Hayashi K, Narutaki K, Nagaoka Y, et al. Therapeutic effect of arctiin and arctigenin in immunocompetent and immunocompromised mice infected with influenza A virus. Biol Pharm Bull 2010;33:1199–205.
  • Chen J, Li W, Jin E, et al. The antiviral activity of arctigenin in traditional Chinese medicine on porcine circovirus type 2. Res Vet Sci 2016;106:159–64.
  • Shen Y-F, Liu L, Chen W-C, et al. Evaluation on the antiviral activity of arctigenin against spring viraemia of carp virus. Aquaculture 2018;483:252–62.
  • Xu X, Li Q, Pang L, et al. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway. Biochem Biophys Res Commun 2013;441:321–6.
  • Chang CZ, Wu SC, Chang CM, et al. Arctigenin, a potent ingredient of Arctium lappa L., induces endothelial nitric oxide synthase and attenuates subarachnoid hemorrhage-induced vasospasm through PI3K/Akt pathway in a rat model. BioMed Res Int 2015;2015:1–490209/11.
  • Swarup V, Ghosh J, Mishra MK, et al. Novel strategy for treatment of Japanese encephalitis using arctigenin, a plant lignan. J Antimicrob Chemother 2008;61:679–88.
  • Wu RM, Sun YY, Zhou TT, et al. Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways. Acta Pharmacol Sin 2014;35:1274–84.
  • Borbely S, Jocsak G, Moldovan K, et al. Arctigenin reduces neuronal responses in the somatosensory cortex via the inhibition of non-NMDA glutamate receptors. Neurochem Int 2016;97:83–90.
  • Zhu Z, Yan J, Jiang W, et al. Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance. J Neurosci 2013;33:13138–49.
  • Song J, Li N, Xia Y, et al. Arctigenin treatment protects against brain damage through an anti-inflammatory and anti-apoptotic mechanism after needle insertion. Front Pharmacol 2016;7:182–/16.
  • Fan T, Jiang WL, Zhu J, et al. Arctigenin protects focal cerebral ischemia-reperfusion rats through inhibiting neuroinflammation. Biol Pharm Bull 2012;35:2004–9.
  • Jeong YH, Park JS, Kim DH, et al. Arctigenin increases hemeoxygenase-1 gene expression by modulating PI3K/AKT signaling pathway in rat primary astrocytes. Biomol Ther 2014;22:497–502.
  • Li A, Wang J, Wu M, et al. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27Kip1 induction by interfering with PI3K/Akt/FOXO3a signaling pathway. Eur J Pharmacol 2015;747:71–87.
  • Wang GX, Han J, Feng TT, et al. Bioassay-guided isolation and identification of active compounds from Fructus Arctii against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitol Res 2009;106:247–55.
  • Tu X, Huang A, Hu Y, et al. Arctigenin: an emerging candidate against infections of Gyrodactylus. Aquaculture 2018;495:983–91.
  • Dias MM, Zuza O, Riani LR, et al. In vitro schistosomicidal and antiviral activities of Arctium lappa L. (Asteraceae) against Schistosoma mansoni and Herpes simplex virus-1. Biomed Pharmacother 2017;94:489–98.
  • Jang YP, Kim SR, Kim YC. Neuroprotective dibenzylbutyrolactone lignans of Torreya nucifera. Planta Med 2001;67:470–2.
  • Zhao Z, Yin Y, Wu H, et al. Arctigenin, a potential anti-arrhythmic agent, inhibits aconitine-induced arrhythmia by regulating multi-ion channels. Cell Physiol Biochem 2013;32:1342–53.
  • Wang L, Zhao F., Liu K Advances in studies on pharmacological effects of arctiin and arctigenin. Zhongcaoyao 2008;39:467–70.
  • Wu X, Tong B, Yang Y, et al. Arctigenin functions as a selective agonist of estrogen receptor β to restrict mTORC1 activation and consequent Th17 differentiation. Oncotarget 2016;7:83893–906.
  • Gu Y, Sun XX, Ye JM, et al. Arctigenin alleviates ER stress via activating AMPK. Acta Pharmacol Sin 2012;33:941–52.
  • Ogungbe IV, Crouch RA, Demeritte T. T (–) Arctigenin and (+) Pinoresinol are antagonists of the human thyroid hormone receptor β. J Chem Inf Model 2014;54:3051–5.
  • Park H, Song KH, Jung PM, et al. Inhibitory effect of Arctigenin from Fructus Arctii extract on melanin synthesis via repression of tyrosinase expression. Evid Based Complement Alternat Med 2013;2013:965312.
  • Ishihara K, Yamagishi N, Saito Y, et al. Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells. Cell Stress Chaperones 2006;11:154–61.
  • Zhang N, Wen Q, Ren L, et al. Neuroprotective effect of arctigenin via upregulation of P-CREB in mouse primary neurons and human SH-SY5Y neuroblastoma cells. Int J Mol Sci 2013;14:18657–69.
  • Gao Y, Kang T., Zhang X Study on the calcium antagonist action of arctigenin. Zhongcaoyao 2000;31:758–62.
  • Huang SL, Yu RT, Gong J, et al. Arctigenin, a natural compound, activates AMP-activated protein kinase via inhibition of mitochondria complex I and ameliorates metabolic disorders in ob/ob mice. Diabetologia 2012;55:1469–81.
  • Gu Y, Qi C, Sun X, et al. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism. Biochem Pharmacol 2012;84:468–76.
  • Wang P, Wang B, Chung S, et al. Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells. RSC Adv 2014;4:35242–50.
  • Wang P, Phan T, Gordon D, et al. Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells. Mol Nutr Food Res 2015;59:250–61.
  • Lee JH, Lee JY, Kim TD, et al. Antiasthmatic action of dibenzylbutyrolactone lignans from fruits of Forsythia viridissima on asthmatic responses to ovalbumin challenge in conscious guinea-pigs. Phytother Res 2011;25:387–95.
  • Kim BJ, Ryu SW, Song BJ. JNK- and p38 Kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem 2006;281:21256–65.
  • Fischer J, Reynolds AJ, Sharp LA, et al. Radical carboxyarylation approach to lignans. Total synthesis of (–)-Arctigenin, (–)-Matairesinol, and related natural products. Org Lett 2004;6:1345–8.
  • Wu P, Xu K, Fu Y, et al. A new method for asymmetric synthesis of (–)-arctigenin and its enantiomer. Youji Huaxue 2016;36:1111–7.
  • Wang H, Wu P, Kang H, et al. Modify a fragment of arctigenin with pyrimidine derivatives. Youji Huaxue 2012;32:1894–8.
  • Sibi MP, Liu P, Ji J, et al. Free-radical-mediated conjugate additions. enantioselective synthesis of butyrolactone natural products: (–)-enterolactone, (–)-arctigenin, (–)-isoarctigenin, (–)-nephrosteranic acid, and (–)-roccellaric acid. J Org Chem 2002;67:1738–45.
  • Bode JW, Doyle MP, Protopopova MN, et al. Intramolecular regioselective insertion into unactivated prochiral carbon-hydrogen bonds with diazoacetates of primary alcohols catalyzed by chiral Dirhodium(II) Carboxamidates. Highly enantioselective total synthesis of natural lignan lactones. J Org Chem 1996;61:9146–55.
  • Sugiyama S, Umehara K, Kuroyanagi M, et al. Studies on the differentiation inducers of myeloid leukemic cells from Citrus species. Chem Pharm Bull 1993;41:714–9.
  • Awale S, Kato M, Dibwe DF, et al. Antiausterity activity of arctigenin enantiomers: importance of (2R,3R)-absolute configuration. Nat Prod Commun 2014;9:79–82.
  • Nikaido T, Ohmoto T, Kinoshita T, et al. Inhibitors of cyclic AMP phosphodiesterase in medicinal plants. II. Inhibition of cyclic AMP phosphodiesterase by lignans. Chem Pharm Bull 1981;29:3586–92.
  • Yamauchi S, Nishimoto A, Nishiwaki H, et al. Discovery of stereospecific cytotoxicity of (8R,8’R)-trans-arctigenin against insect cells and structure-activity relationship on aromatic ring. Bioorg Med Chem Lett 2020;30:127191.
  • Semenkovich CF. Insulin resistance and atherosclerosis. J Clin Invest 2006;116:1813–22.
  • Ren JM, Marshall BA, Gulve EA, et al. Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle. J Biol Chem 1993;268:16113–5.
  • Hansell CAH, Schiering C, Kinstrie R, et al. Universal expression and dual function of the atypical chemokine receptor D6 on innate-like B cells in mice. Blood 2011;117:5413–24.
  • Kelley DE, Goodpaster B, Wing RR, et al. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 1999;277: E1130–E1141.
  • Duan S, Huang S, Gong J, et al. Design and synthesis of Novel Arctigenin analogues for the amelioration of metabolic disorders. ACS Med Chem Lett 2015;6:386–91.
  • Pelter A, Elgendy SMA. Phenolic oxidations with phenyliodonium diacetate. J Chem Soc, Perkin Trans 1 1993;1993:1891–6.
  • Gates BD, Dalidowicz P, Tebben A, et al. Mechanistic aspects and synthetic applications of the electrochemical and iodobenzene bistrifluoroacetate oxidative 1,3-cycloadditions of phenols and electron-rich styrene derivatives. J Org Chem 1992;57:2135–43.
  • Tamura Y, Yakura T, Haruta J, et al. An efficient conversion of keto groups into dihydroxyacetone groups: oxidation of ethynylcarbinol intermediates by using hypervalent iodine reagent. Tetrahedron Lett 1985;26:3837–40.
  • Ellinger-Ziegelbauer H, Dreyer C. A retinoic acid receptor expressed in the early development of Xenopus laevis. Genes Dev 1991;5:94–104.
  • Krishna KVR, Sujatha K, Kapil RS. Phenolic oxidative coupling with the hypervalent organoiodine compound (diacetoxyiodo)benzene. Tetrahedron Lett 1990;31:1351–2.
  • Ward RS, Pelter A, Abd-El-Ghani A. Preparation of tetrahydrodibenzocyclooctene lignans and spirodienones by hypervalent iodine oxidation of phenolic dibenzylbutyrolactones. Tetrahedron 1996;52:1303–36.
  • Zhang S, Xiong H, Lu F, et al. Synthesis of N-acyl sulfamates from fluorosulfonates and potassium trimethylsilyloxyl imidates. J Org Chem 2019;84:15380–8.
  • Ward RS, Hughes DD. Oxidative cyclisation of 3,4-dibenzyltetrahydrofurans using ruthenium tetra(trifluoroacetate). Tetrahedron 2001;57:2057–64.
  • Eich E, Pertz H, Kaloga M, et al. (–)-Arctigenin as a lead structure for inhibitors of human immunodeficiency virus type-1 integrase. J Med Chem 1996;39:86–95.
  • Ward RS, Hughes DD. Oxidative cyclization of cis- and trans-2,3-dibenzylbutyrolactones using ruthenium tetra(trifluoroacetate). Tetrahedron 2001;57:4015–22.
  • Cai E, Guo S, Yang L, et al. Synthesis and antitumour activity of arctigenin amino acid ester derivatives against H22 hepatocellular carcinoma. Nat Prod Res 2018;32:406–11.
  • Cai EB, Yang LM, Jia CX, et al. The synthesis and evaluation of arctigenin amino acid ester derivatives. Chem Pharm Bull 2016;64:1466–73.
  • Han M, Jia X, Cai E, et al. The effects of Arctigenin-Valine ester on chemotherapy-induced myelosuppression in mice. Bioorg Med Chem 2019;27:2480–6.
  • Chen Q, Yang L, Han M, et al. Synthesis and pharmacological activity evaluation of arctigenin monoester derivatives. Biomed Pharmacother 2016;84:1792–801.
  • Sato K, Tsuchihara K, Fujii S, et al. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res 2007;67:9677–84.
  • Belkacemi L, Lam E, Caldwell JD, et al. Stimulation of human breast carcinoma cell invasiveness and urokinase plasminogen activator activity by glucose deprivation. Exp Cell Res 2006;312:1685–92.
  • Izuishi K, Kato K, Ogura T, et al. Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res 2000;60:6201–7.
  • Awale S, Nakashima EMN, Kalauni SK, et al. Angelmarin, a novel anti-cancer agent able to eliminate the tolerance of cancer cells to nutrient starvation. Bioorg Med Chem Lett 2006;16:581–3.
  • Kudou N, Taniguchi A, Sugimoto K, et al. Synthesis and antitumor evaluation of arctigenin derivatives based on antiausterity strategy. Eur J Med Chem 2013;60:76–88.
  • Lei M, Gan X, Zhao K, et al. Synthesis and cytotoxicity evaluation of 4-amino-4-dehydroxylarctigenin derivatives in glucose-starved A549 tumor cells. Bioorg Med Chem Lett 2015;25:435–7.
  • Li D, Xie K, Wolff R, et al. Pancreatic cancer. Lancet 2004;363:1049–57.
  • Shore S, Vimalachandran D, Raraty MGT, et al. Cancer in the elderly: pancreatic cancer. Surg Oncol 2004;13:201–10.
  • Chung HW, Bang SM, Park SW, et al. A prospective randomized study of gemcitabine with doxifluridine versus paclitaxel with doxifluridine in concurrent chemoradiotherapy for locally advanced pancreatic cancer. Int J Radiat Oncol, Biol, Phys 2004;60:1494–501.
  • Ahne W, Bjorklund HV, Essbauer S, et al. Spring viremia of carp (SVC). Dis Aquat Organ 2002;52:261–72.
  • Koutna M, Vesely T, Psikal I, et al. Identification of spring viraemia of carp virus (SVCV) by combined RT-PCR and nested PCR. Dis Aquat Org 2003;55:229–35.
  • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011;147:728–41.
  • Hsieh CJ, Kuo PL, Hsu YC, et al. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation. Free Radical Biol Med 2014;67:159–70.
  • Lee JY, Kim CJ. a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes. Arch Pharmacal Res 2010;33:947–57.
  • Chen W-C, Hu Y, Liu L, et al. Synthesis and in vitro activities evaluation of arctigenin derivatives against spring viraemia of carp virus. Fish Shellfish Immunol 2018;82:17–26.
  • Hu Y, Liu L, Liu G-L, et al. Synthesis and anthelmintic activity of arctigenin derivatives against Dactylogyrus intermedius in goldfish. Bioorg Med Chem Lett 2017;27:3310–6.
  • Dixon P, Paley R, Oidtmann B, et al. Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review. Vet Res 2016;47:63.
  • Ahmadivand S, Soltani M, Mardani K, et al. Infectious hematopoietic necrosis virus (IHNV) outbreak in farmed rainbow trout in Iran: viral isolation, pathological findings, molecular confirmation, and genetic analysis. Virus Res 2017;229:17–23.
  • Hu Y, Li B, Shen Y, et al. Synthesis of arctigenin derivatives against infectious hematopoietic necrosis virus. Eur J Med Chem 2019;163:183–94.
  • Lüder CG, Bohne W, Soldati D. D Toxoplasmosis: a persisting challenge. Trends Parasitol 2001;17:460–3.
  • Mui EJ, Jacobus D, Milhous WK, et al. Triazine inhibits Toxoplasma gondii tachyzoites in vitro and in vivo. Antimicrob Agents Chemother 2005;49:3463–7.
  • Zhang HB, Shen QK, Wang H, et al. Synthesis and evaluation of novel arctigenin derivatives as potential anti-Toxoplasma Gondii agents. Eur J Med Chem 2018;158:414–27.
  • Winder WW. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol 2001;91:1017–28.
  • Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 1998;67:821–55.
  • Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 2007;100:328–41.
  • Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 1999;277: E1–E10.
  • Luo Z, Saha AK, Xiang X, Ruderman NB. AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 2005;26:69–76.
  • Lim CT, Kola B, Korbonits M. Korbonits M AMPK as a mediator of hormonal signalling. J Mol Endocrinol 2010;44:87–97.
  • Musi N, Fujii N, Hirshman MF, et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes 2001;50:921–7.
  • Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 2001;414:821–7.
  • Viollet B, Lantier L, Devin-Leclerc J, et al. Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front Biosci, Landmark Ed 2009;14:3380–400.
  • Zhang BB, Zhou G, Li C. C AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 2009;9:407–16.
  • Zhou G, Sebhat IK, Zhang BB. Sebhat IK Zhang BB AMPK activators – potential therapeutics for metabolic and other diseases. Acta Physiol 2009;196:175–90.
  • Shen S, Zhuang J, Chen Y, et al. Synthesis and biological evaluation of arctigenin ester and ether derivatives as activators of AMPK. Bioorg Med Chem 2013;21:3882–93.
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Delivery Rev 2013;65:36–48.
  • Liu J, Huang Y, Kumar A, et al. pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 2014;32:693–710.