1,172
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

Upregulation of p53 through induction of MDM2 degradation: improved potency through the introduction of an alkylketone sidechain on the anthraquinone core

, , , & ORCID Icon
Pages 2370-2381 | Received 09 Feb 2022, Accepted 19 Aug 2022, Published online: 31 Aug 2022

References

  • Turcotte LM, Hocutt C, Messinger YH, et al. Cost of pediatric acute lymphoblastic leukemia care in the current treatment era. Blood 2021;138:663.
  • Tyner JW, Jemal AM, Thayer M, et al. Targeting survivin and p53 in pediatric acute lymphoblastic leukemia. Leukemia 2012;26:623–32.
  • Yuan S, Wang X, Hou S, et al. PHF6 and JAK3 mutations cooperate to drive T-cell acute lymphoblastic leukemia progression. Leukemia 2022;36:370–82.
  • Amaral JD, Xavier JM, Steer CJ, Rodrigues CM. The role of p53 in apoptosis. Discov Med 2010;9:145–52.
  • Wade M, Li Y-C, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 2013;13:83–96.
  • Piette J, Neel H, Maréchal V. Mdm2: keeping p53 under control. Oncogene 1997;15:1001–10.
  • Urso L, Calabrese F, Favaretto A, et al. Critical review about MDM2 in cancer: possible role in malignant mesothelioma and implications for treatment. Crit Rev Oncol Hematol 2016;97:220–30.
  • Watanabe T, Ichikawa A, Saito H, Hotta T. Overexpression of the MDM2 oncogene in leukemia and lymphoma. Leuk Lymphoma 1996;21:391–7, color plates XVI following 5.
  • Kojima K, Ishizawa J, Andreeff M. Pharmacological activation of wild-type p53 in the therapy of leukemia. Exp Hematol 2016;44:791–8.
  • Gu L, Zhu N, Findley HW, Zhou M. MDM2 antagonist nutlin-3 is a potent inducer of apoptosis in pediatric acute lymphoblastic leukemia cells with wild-type p53 and overexpression of MDM2. Leukemia 2008;22:730–9.
  • Trino S, De Luca L, Laurenzana I, et al. P53-MDM2 pathway: evidences for a new targeted therapeutic approach in B-acute lymphoblastic leukemia. Front Pharmacol 2016;7:491.
  • Han X, Garcia-Manero G, McDonnell TJ, et al. HDM4 (HDMX) is widely expressed in adult pre-B acute lymphoblastic leukemia and is a potential therapeutic target. Mod Pathol 2007;20:54–62.
  • Anifowose A, Agbowuro AA, Yang X, Wang B. Anticancer strategies by upregulating p53 through inhibition of its ubiquitination by MDM2. Med Chem Res 2020;29:1105–21.
  • Shangary S, Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 2009;49:223–41.
  • Zhu N, Gu L, Li F, Zhou M. Inhibition of the Akt/survivin pathway synergizes the antileukemia effect of nutlin-3 in acute lymphoblastic leukemia cells. Mol Cancer Ther 2008;7:1101–9.
  • Trino S, Iacobucci I, Erriquez D, et al. Targeting the p53-MDM2 interaction by the small-molecule MDM2 antagonist Nutlin-3a: a new challenged target therapy in adult Philadelphia positive acute lymphoblastic leukemia patients. Oncotarget 2016;7:12951–61.
  • Ravandi F, Gojo I, Patnaik MM, et al. A phase I trial of the human double minute 2 inhibitor (MK-8242) in patients with refractory/recurrent acute myelogenous leukemia (AML). Leuk Res 2016;48:92–100.
  • Draganov AB, Yang X, Anifowose A, et al. Upregulation of p53 through induction of MDM2 degradation: anthraquinone analogs. Bioorg Med Chem 2019;27:3860–3865.
  • Bernal F, Tyler AF, Korsmeyer SJ, et al. Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 2007;129:2456–2457.
  • Bernal F, Wade M, Godes M, et al. A stapled p53 helix overcomes HDMX-mediated suppression of p53. Cancer Cell 2010;18:411–22.
  • Zhang H, Gu L, Liu T, et al. Inhibition of MDM2 by nilotinib contributes to cytotoxicity in both Philadelphia-positive and negative acute lymphoblastic leukemia. PLOS One 2014;9:e100960.
  • Huang M, Zhang H, Liu T, et al. Triptolide inhibits MDM2 and induces apoptosis in acute lymphoblastic leukemia cells through a p53-independent pathway. Mol Cancer Ther 2013;12:184–94.
  • Li Y, Yang J, Aguilar A, et al. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J Med Chem 2019;62:448–66.
  • He S, Ma J, Fang Y, et al. Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. Acta Pharm Sin B 2021;11:1617–28.
  • Anifowose A, Yuan Z, Yang X, et al. Upregulation of p53 through induction of MDM2 degradation: amino acid prodrugs of anthraquinone analogs. Bioorg Med Chem Lett 2020;30:126786.
  • Anifowose A, Agbowuro AA, Tripathi R, et al. Inducing apoptosis through upregulation of p53: structure-activity exploration of anthraquinone analogs. Med Chem Res 2020;29:1199–210.
  • Yang X, Sun G, Yang C, Wang B. Novel rhein analogues as potential anticancer agents. ChemMedChem 2011;6:2294–301.
  • Gu L, Zhang H, Liu T, et al. Inhibition of MDM2 by a rhein-derived compound AQ-101 suppresses cancer development in SCID mice. Mol Cancer Ther 2018;17:497–507.
  • Malik MS, Alsantali RI, Jassas RS, et al. Journey of anthraquinones as anticancer agents – a systematic review of recent literature. RSC Adv 2021;11:35806–27.
  • Damiani RM, Moura DJ, Viau CM, et al. Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol 2016;90:2063–76.
  • Paul F, Dörr J, Würfel J, et al. Early mitoxantrone-induced cardiotoxicity in secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2007;78:198–200.
  • Menna P, Salvatorelli E, Giampietro R, et al. Doxorubicin-dependent reduction of ferrylmyoglobin and inhibition of lipid peroxidation: implications for cardiotoxicity of anticancer anthracyclines. Chem Res Toxicol 2002;15:1179–89.
  • Singal PK, Li T, Kumar D, et al. Adriamycin-induced heart failure: mechanism and modulation. Mol Cell Biochem 2000;207:77–86.
  • Liu J, Mao W, Ding B, Liang C-s. ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am J Physiol Heart Circ Physiol 2008;295:H1956–65.
  • Guin PS, Das S. Exploration of electrochemical intermediates of the anticancer drug doxorubicin hydrochloride using cyclic voltammetry and simulation studies with an evaluation for its interaction with DNA. Int J Electrochem 2014;2014:1–8.
  • Fei J, Peng Y, Tan H, et al. Study on the electrochemical behavior and differential pulse voltammetric determination of rhein using a nanoparticle composite film-modified electrode. Bioelectrochemistry 2007;70:369–74.
  • Pan L, Yang K, Li G, Ge H. Palladium-catalyzed site-selective arylation of aliphatic ketones enabled by a transient ligand. Chem Commun 2018;54:2759–62.
  • Younis IR, Lakota EA, Volpe DA, et al. Drug-drug interaction studies of methadone and antiviral drugs: lessons learned. J Clin Pharmacol 2019;59:1035–43.
  • Gehringer M, Laufer SA. Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. J Med Chem 2019;62:5673–5724.
  • Cully M. Novel chemistry for covalent inhibitors. Nat Rev Drug Discov 2020;19:754.
  • Singh J, Petter RC, Baillie TA, Whitty A. The resurgence of covalent drugs. Nat Rev Drug Discov 2011;10:307–17.
  • Sutanto F, Konstantinidou M, Dömling A. Covalent inhibitors: a rational approach to drug discovery. RSC Med Chem 2020;11:876–84.
  • Mons E, Jansen IDC, Loboda J, et al. The alkyne moiety as a latent electrophile in irreversible covalent small molecule inhibitors of cathepsin K. J Am Chem Soc 2019;141:3507–14.
  • Amishiro N, Nagamura S, Kobayashi E, et al. Synthesis and antitumor activity of duocarmycin derivatives: A-ring pyrrole compounds bearing β-(5′,6′,7′-trimethoxy-2′-indolyl)acryloyl group. Bioorg Med Chem 2000;8:1637–43.
  • Dimmock JR, Padmanilayam MP, Puthucode RN, et al. A conformational and structure-activity relationship study of cytotoxic 3,5-bis(arylidene)-4-piperidones and related N-acryloyl analogues. J Med Chem 2001;44:586–93.
  • Van Herck N, Maes D, Unal K, et al. Covalent adaptable networks with tunable exchange rates based on reversible thiol-yne cross-linking. Angew Chem Int Ed Engl 2020;59:3609–17.
  • Henise JC, Taunton J. Irreversible Nek2 kinase inhibitors with cellular activity. J Med Chem 2011;54:4133–46.
  • Harada H, Kazami J, Watanuki S, et al. Ethenesulfonamide and ethanesulfonamide derivatives, a novel class of orally active endothelin-A receptor antagonists. Bioorg Med Chem 2001;9:2955–68.
  • Flanagan ME, Abramite JA, Anderson DP, et al. Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of irreversible inhibitors. J Med Chem 2014;57:10072–9.
  • Petri L, Ábrányi-Balogh P, Varga PR, et al. Comparative reactivity analysis of small-molecule thiol surrogates. Bioorg Med Chem 2020;28:115357.
  • Costa AM, Bosch L, Petit E, Vilarrasa J. Computational study of the addition of methanethiol to 40+ Michael acceptors as a model for the bioconjugation of cysteines. J Org Chem 2021;86:7107–18.
  • Kobayashi T, Hoppmann C, Yang B, Wang L. Using protein-confined proximity to determine chemical reactivity. J Am Chem Soc 2016;138:14832–5.
  • Li Q, Chen Q, Klauser PC, et al. Developing covalent protein drugs via proximity-enabled reactive therapeutics. Cell 2020;182:85–97.e16.
  • Alkhalaf M, El-Mowafy AM. Overexpression of wild-type p53 gene renders MCF-7 breast cancer cells more sensitive to the antiproliferative effect of progesterone. J Endocrinol 2003;179:55–62.
  • Zhao Y, Yu S, Sun W, et al. A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J Med Chem 2013;56:5553–61.
  • Hoppe-Seyler F, Butz K. Repression of endogenous p53 transactivation function in HeLa cervical carcinoma cells by human papillomavirus type 16 E6, human mdm-2, and mutant p53. J Virol 1993;67:3111–7.
  • Xie W, Zhang W, Sun M, et al. Deacetylmycoepoxydiene is an agonist of Rac1, and simultaneously induces autophagy and apoptosis. Appl Microbiol Biotechnol 2018;102:5965–75.
  • Watkins SJ, Borthwick GM, Arthur HM. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim 2011;47:125–31.
  • Lin Y-C, Boone M, Meuris L, et al. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun 2014;5:4767.
  • Belzile J-P, Karatzas A, Shiu H-Y, et al. Increased resistance to nitrogen mustards and antifolates following in vitro selection of murine fibroblasts and primary hematopoietic cells transduced with a bicistronic retroviral vector expressing the rat glutathione S-transferase A3 and a mutant dihydrofolate reductase. Cancer Gene Ther 2003;10:637–46.
  • Holbeck SL, Collins JM, Doroshow JH. Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol Cancer Ther 2010;9:1451–60.
  • Chen Y, Jia Y, Song W, Zhang L. Therapeutic potential of nitrogen mustard based hybrid molecules. Front Pharmacol 2018;9:1453.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3–26.