1,422
Views
4
CrossRef citations to date
0
Altmetric
Research Papers

New pyrazolylpyrazoline derivatives as dual acting antimalarial-antileishamanial agents: synthesis, biological evaluation and molecular modelling simulations

ORCID Icon, , , , , , , , ORCID Icon & ORCID Icon show all
Pages 2320-2333 | Received 08 Jun 2022, Accepted 21 Aug 2022, Published online: 29 Aug 2022

References

  • W.H.O. World malaria report. https://www.who.int/publications/i/item/9789241565721; 2019.
  • Cheviet T, Wein S, Bourchenin G, et al. beta-hydroxy- and beta-aminophosphonate acyclonucleosides as potent inhibitors of Plasmodium falciparum growth. J Med Chem 2020;63:8069–87.
  • Madhav H, Hoda N. An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins. Eur J Med Chem 2021;210:112955.
  • Goncalves GA, Spillere AR, das Neves GM, et al. Natural and synthetic coumarins as antileishmanial agents: a review. Eur J Med Chem 2020;203:112514.
  • Bekhit AA, El-Agroudy E, Helmy A, et al. Leishmania treatment and prevention: natural and synthesized drugs. Eur J Med Chem 2018;160:229–44.
  • Pigott DM, Bhatt S, Golding N, et al. Global distribution maps of the leishmaniases. eLife 2014;3:e02851 1–21.
  • W.H.O., Leishmaniasis. https://www.who.int/health-topics/leishmaniasis#tab=tab_1; 2020.
  • Ogutu B. Artemether and lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in sub-Saharan Africa. Expert Opin Pharmacother 2013;14:643–54.
  • Nwaka S, Hudson A. Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 2006;5:941–55.
  • Rajasekaran R, Chen YP. Potential therapeutic targets and the role of technology in developing novel antileishmanial drugs. Drug Discov Today 2015;20:958–68.
  • Vickers TJ, Beverley SM. Folate metabolic pathways in Leishmania. Essays Biochem 2011;51:63–80.
  • Nare B, Hardy LW, Beverley SM. The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major. J Biol Chem 1997;272:13883–91.
  • Corona P, Gibellini F, Cavalli A, et al. Structure-based selectivity optimization of piperidine–pteridine derivatives as potent Leishmania pteridine reductase inhibitors. J Med Chem 2012;55:8318–29.
  • Dube D, Periwal V, Kumar M, et al. 3D-QSAR based pharmacophore modeling and virtual screening for identification of novel pteridine reductase inhibitors. J Mol Model 2012;18:1701–11.
  • de Souza Moreira D, Ferreira RF, Murta SMF. Molecular characterization and functional analysis of pteridine reductase in wild-type and antimony-resistant Leishmania lines. Experiment Parasitol 2016;160:60–6.
  • Nayak N, Ramprasad J, Dalimba U. New INH–pyrazole analogs: design, synthesis and evaluation of antitubercular and antibacterial activity. Bioorg Med Chem Lett 2015;25:5540–5.
  • Li Y-R, Li C, Liu J-C, et al. Synthesis and biological evaluation of 1,3-diaryl pyrazole derivatives as potential antibacterial and anti-inflammatory agents. Bioorg Med Chem Lett 2015;25:5052–7.
  • Meng FJ, Sun T, Dong WZ, et al. Discovery of novel pyrazole derivatives as potent neuraminidase inhibitors against influenza H1N1 virus. Archiv Der Pharmazie 2016;349:168–74.
  • Chuang H, Huang L-CS, Kapoor M, et al. Design and synthesis of pyridine-pyrazole-sulfonate derivatives as potential anti-HBV agents. MedChemComm 2016;7:832–6.
  • Hafez HN, El-Gazzar A-RBA, Al-Hussain SA. Novel pyrazole derivatives with oxa/thiadiazolyl, pyrazolyl moieties and pyrazolo[4,3-d]-pyrimidine derivatives as potential antimicrobial and anticancer agents. Bioorg Med Chem Lett 2016;26:2428–33.
  • Shi JB, Tang WJ, qi XB, et al. Novel pyrazole-5-carboxamide and pyrazole–pyrimidine derivatives: synthesis and anticancer activity. Eur J Med Chem 2015;90:889–96.
  • Özdemir A, Altıntop MD, Kaplancıklı ZA, et al. Synthesis and evaluation of new 1, 5-Diaryl-3-[4-(methyl-sulfonyl) phenyl]-4, 5-dihydro-1H-pyrazole derivatives as potential antidepressant agents. Molecules 2015;20:2668–84.
  • Viveka S, Dinesha D, Shama P, et al. Design, synthesis, anticonvulsant and analgesic studies of new pyrazole analogues: a Knoevenagel reaction approach. RSC Advances 2015;5:94786–95.
  • Mabkhot YN, Kaal NA, Alterary S, et al. Synthesis, in-vitro antibacterial, antifungal, and molecular modeling of potent anti-microbial agents with a combined pyrazole and thiophene pharmacophore. Molecules 2015;20:8712–29.
  • Faidallah HM, Al-Mohammadi MM, Alamry KA, Khan KA. Synthesis and biological evaluation of fluoropyrazolesulfonylurea and thiourea derivatives as possible antidiabetic agents. J Enzyme Inhib Med Chem 2016;31(Suppl 1):157–163.
  • Bekhit AA, Saudi MN, Hassan AMM, et al. Synthesis, in silico experiments and biological evaluation of 1,3,4-trisubstituted pyrazole derivatives as antimalarial agents. Eur J Med Chem 2019;163:353–66.
  • Bekhit AA, Saudi MN, Hassan AM, et al. Synthesis, molecular modeling and biological screening of some pyrazole derivatives as antileishmanial agents. Future Med Chem 2018;10:2325–44.
  • Tageldin GN, Fahmy SM, Ashour HM, et al. Design, synthesis and evaluation of some pyrazolo[3,4-d]pyrimidines as anti-inflammatory agents. Bioorg Chem 2018;78:358–71.
  • Atta KFM, Ibrahim TM, Farahat OOM, et al. Synthesis, modeling and biological evaluation of hybrids from pyrazolo[1,5c]pyrimidine as antileishmanial agents. Future Med Chem 2017;9:1913–29.
  • Ramirez-Prada J, Robledo SM, Velez ID, et al. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur J Med Chem 2017;131:237–54.
  • Insuasty B, Ramirez J, Becerra D, et al. An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1,4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur J Med Chem 2015;93:401–13.
  • Bekhit AA, Hassan AM, El Razik HAA, et al. New heterocyclic hybrids of pyrazole and its bioisosteres: design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents. Eur J Med Chem 2015;94:30–44.
  • Bekhit AA, Ashour HMA, Bekhit AE-DA, et al. Synthesis of some pyrazolyl benzenesulfonamide derivatives as dual anti-inflammatory antimicrobial agents. J Enzyme Inhib Med Chem 2009;24:296–309.
  • Faour WH, Mroueh M, Daher CF, et al. Synthesis of some new amide-linked bipyrazoles and their evaluation as anti-inflammatory and analgesic agents. J Enzyme Inhib Med Chem 2016;31:1079–94.
  • Bekhit AA, Baraka AM. Novel milrinone analogs of pyridine-3-carbonitrile derivatives as promising cardiotonic agents. Eur J Med Chem 2005;40:1405–13.
  • Arba M, Wahyudi ST, Brunt DJ, et al. Mechanistic insight on the remdesivir binding to RNA-Dependent RNA polymerase (RdRp) of SARS-cov-2. Comp Biol Med 2021;129:104156.
  • Ismail MI, Ragab HM, Bekhit AA, Ibrahim TM. Targeting multiple conformations of SARS-CoV2 papain-like protease for drug repositioning: an in-silico study. Comp Biol Med 2021;131:104295.
  • Pandey P, Rane JS, Chatterjee A, et al. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J Biomol Struct Dyn 2021;39:6306–16.
  • Pandey P, Prasad K, Prakash A, Kumar V. Insights into the biased activity of dextromethorphan and haloperidol towards SARS-CoV-2 NSP6: in silico binding mechanistic analysis. J Mol Med 2020;98:1659–73.
  • Fidock DA, Rosenthal PJ, Croft SL, et al. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov 2004;3:509–20.
  • Trager W, Jensen JB. Human malaria parasites in continuous culture. Science 1976;193:673–5.
  • Mendoza-Martinez C, Galindo-Sevilla N, Correa-Basurto J, et al. Antileishmanial activity of quinazoline derivatives: synthesis, docking screens, molecular dynamic simulations and electrochemical studies. Eur. J. Med. Chem 2015;92:314–31.
  • Temraz MG, Elzahhar PA, El-Din ABA, et al. Anti-leishmanial click modifiable thiosemicarbazones: design, synthesis, biological evaluation and in silico studies. Eur J Med Chem 2018;151:585–600.
  • Bekhit AA, Hymete A, Damtew A, et al. Synthesis and biological screening of some pyridine derivatives as anti-malarial agents. J Enzyme Inhib Med Chem 2012;27:69–77.
  • Bekhit AA, Fahmy HTY. Design and synthesis of some substituted 1H‐Pyrazolyl‐oxazolidines or 1H‐Pyrazolyl‐thiazolidines as anti‐inflammatory‐antimicrobial agents. Archiv Der Pharmazie 2003;336:111–8.
  • Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model 1999;17:57–61.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455–61.
  • Elghoneimy LK, Ismail MI, Boeckler FM, et al. Facilitating SARS CoV-2 RNA-dependent RNA polymerase (RdRp) drug discovery by the aid of HCV NS5B palm subdomain binders: in silico approaches and benchmarking. Comp Biol Med 2021;134:104468.
  • Bekhit AA, Nasralla SN, El-Agroudy EJ, et al. Investigation of the anti-inflammatory and analgesic activities of promising pyrazole derivative. Eur J Pharm Sci 2022;168:106080.
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1–2:19–25.
  • Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 2001;105:9954–60.
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys 2007;126:014101.
  • Berendsen HJC, Postma JPM, Gunsteren WFv, et al. Molecular dynamics with coupling to an external bath. J Chem Phys 1984;81:3684–90.
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 1981;52:7182–90.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 1993;98:10089–92.
  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J Comp Chem 1997;18:1463–72.
  • Huang J, MacKerell AD Jr.CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comp Chem 2013;34:2135–45.
  • Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J Comp Chem 2011;32:2359–68.
  • McGibbon RT, Beauchamp KA, Harrigan MP, et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys J 2015;109:1528–32.
  • Turner PX. Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR; 2005.