1,092
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

Design, synthesis, biological evaluation and molecular docking study of 2,4-diarylimidazoles and 2,4-bis(benzyloxy)-5-arylpyrimidines as novel HSP90 N-terminal inhibitors

, , , , , , & ORCID Icon show all
Pages 2551-2565 | Received 24 Jun 2022, Accepted 09 Sep 2022, Published online: 19 Sep 2022

References

  • Freilich R, Arhar T, Abrams JL, Gestwicki JE. Protein-protein interactions in the molecular chaperone network. Acc Chem Res. 2018;51(4):940–949.
  • Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem. 2013;82:323–355.
  • Hoter A, El-Sabban ME, Naim HY. The HSP90 family: structure, regulation, function, and implications in health and disease. IJMS. 2018;19(9):2560.
  • Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 2017;18(6):345–360.
  • Picard D. Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci. 2002;59(10):1640–1648.
  • Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5(10):761–772.
  • Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature. 2003;425(6956):407–410.
  • Miyata Y, Nakamoto H, Neckers L. The therapeutic target Hsp90 and cancer hallmarks. Curr Pharm Des. 2013;19(3):347–365.
  • Serwetnyk MA, Blagg BSJ. The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition. Acta Pharm Sin B. 2021;11(6):1446–1468.
  • Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer. 2010;10(8):537–549.
  • Bohush A, Bieganowski P, Filipek A. Hsp90 and its co-chaperones in neurodegenerative diseases. IJMS. 2019;20(20):4976.
  • Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, Grassi D, Gregg SQ, Stripay JL, Dorronsoro A, et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun. 2017;8(1):422.
  • Huang DS, LeBlanc EV, Shekhar-Guturja T, Robbins N, Krysan DJ, Pizarro J, Whitesell L, Cowen LE, Brown LE. Design and synthesis of fungal-selective resorcylate aminopyrazole Hsp90 inhibitors. J Med Chem. 2020;63(5):2139–2180.
  • Lubkowska A, Pluta W, Strońska A, Lalko A. Role of heat shock proteins (HSP70 and HSP90) in viral infection. IJMS. 2021;22(17):9366.
  • Noddings CM, Wang RY-R, Johnson JL, Agard DA. Structure of Hsp90-p23-GR reveals the Hsp90 client-remodelling mechanism. Nature. 2022;601(7893):465–469.
  • Verba KA, Wang RY-R, Arakawa A, Liu Y, Shirouzu M, Yokoyama S, Agard DA. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science. 2016;352(6293):1542–1547.
  • Li L, Chen N-N, You Q-D, Xu X-L. An updated patent review of anticancer Hsp90 inhibitors (2013-present). Expert Opin Ther Pat. 2021;31(1):67–80.
  • Xiao Y, Liu Y. Recent advances in the discovery of novel HSP90 inhibitors: an update from 2014. Curr Drug Targets. 2020;21(3):302–317.
  • Bickel D, Gohlke H. C-terminal modulators of heat shock protein of 90 kDa (HSP90): state of development and modes of action. Bioorg Med Chem. 2019;27(21):115080.
  • Wang Y, Mcalpine SR. N-terminal and C-terminal modulation of Hsp90 produce dissimilar phenotypes. Chem Commun. 2015;51(8):1410–1413.
  • Li L, Wang L, You Q-D, Xu X-L. Heat shock protein 90 inhibitors: an update on achievements, challenges, and future directions. J Med Chem. 2020;63(5):1798–1822.
  • Azimi A, Caramuta S, Seashore-Ludlow B, Boström J, Robinson JL, Edfors F, Tuominen R, Kemper K, Krijgsman O, Peeper DS, et al. Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors. Mol Syst Biol. 2018;14(3):e7858.
  • Eroglu Z, Chen YA, Gibney GT, Weber JS, Kudchadkar RR, Khushalani NI, Markowitz J, Brohl AS, Tetteh LF, Ramadan H, et al. Combined BRAF and HSP90 inhibition in patients with unresectable BRAF (V600E)-mutant melanoma. Clin Cancer Res. 2018;24(22):5516–5524.
  • Birbo B, Madu EE, Madu CO, Jain A, Lu Y. Role of HSP90 in cancer. IJMS. 2021;22(19):10317.
  • Solárová Z, Mojžiš J, Solár P. Hsp90 inhibitor as a sensitizer of cancer cells to different therapies (review). Int J Oncol. 2015; 46(3):907–926.
  • Mortensen ACL, Mohajershojai T, Hariri M, Pettersson M, Spiegelberg D. Overcoming limitations of cisplatin therapy by additional treatment with the HSP90 inhibitor onalespib. Front Oncol. 2020;10(532285):532285.
  • Liu Y, Liu X, Li L, Dai R, Shi M, Xue H, Liu Y, Wang H. Identification and structure-activity studies of 1,3-Dibenzyl-2-aryl imidazolidines as novel Hsp90 inhibitors. Molecules. 2019;24(11):2105.
  • Hwang JY, Kim H-Y, Jo S, Park E, Choi J, Kong S, Park D-S, Heo JM, Lee JS, Ko Y, et al. Synthesis and evaluation of hexahydropyrimidines and diamines as novel hepatitis C virus inhibitors. Eur J Med Chem. 2013;70:315–325.
  • Godin G, Levrand B, Trachsel A, Lehn J-M, Herrmann A. Reversible formation of aminals: a new strategy to control the release of bioactive volatiles from dynamic mixtures. Chem Commun. 2010;46(18):3125–3127.
  • Buchs Née Levrand B, Godin G, Trachsel A, de Saint Laumer J-Y, Lehn J-M, Herrmann A. Reversible aminal formation: controlling the evaporation of bioactive volatiles by dynamic combinatorial/covalent chemistry. Eur J Org Chem. 2011;2011(4):681–695.
  • Zhang L, Peng X-M, Damu GLV, Geng R-X, Zhou C-H. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev. 2014;34(2):340–437.
  • Jeelan BN, Goudgaon NM. A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential. J Mol Struct. 2021;1246:131168.
  • Senecal TD, Shu W, Buchwald SL. A general, practical palladium-catalyzed cyanation of (hetero)aryl chlorides and bromides. Angew Chem Int Ed Engl. 2013;52(38):10035–10039.
  • Wang D, Haseltine J. A comparison of phenylboronic acid and phenyltrimethyltin in the palladium-catalyzed arylation of 1,5-dialkylimidazoles. J Heter Chem. 1994;31(6):1637–1639.
  • O'Connell JF, Parquette J, Yelle WE, Wang W, Rapoport H. Convenient synthesis of methyl 1-methyl-2,4-dibromo-5-imidazolecarboxylate. Synthesis. 1988;1988(10):767–771.
  • Li B, Chiu CK-F, Hank RF, Murry J, Roth J, Tobiassen H. An optimized process for formation of 2,4-disubstituted imidazoles from condensation of amidines and α-haloketones. Org Process Res Dev. 2002;6(5):682–683. − 
  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell. 1997;89(2):239–250.
  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209–249.
  • Zagouri F, Sergentanis TN, Chrysikos D, Papadimitriou CA, Dimopoulos M-A, Psaltopoulou T. Hsp90 inhibitors in breast cancer: a systematic review. Breast. 2013;22(5):569–578.
  • Song M, Bode AM, Dong Z, Lee M-H. AKT as a therapeutic target for cancer. Cancer Res. 2019;79(6):1019–1031.
  • Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B. 2018;8(4):552–562.
  • Howes R, Barril X, Dymock BW, Grant K, Northfield CJ, Robertson AGS, Surgenor A, Wayne J, Wright L, James K, et al. A fluorescence polarization assay for inhibitors of Hsp90. Anal Biochem. 2006;350(2):202–213.