1,102
Views
4
CrossRef citations to date
0
Altmetric
Research Papers

Design and synthesis of some new benzoylthioureido phenyl derivatives targeting carbonic anhydrase enzymes

, , , , , , & ORCID Icon show all
Pages 2702-2709 | Received 26 Jul 2022, Accepted 13 Sep 2022, Published online: 27 Sep 2022

References

  • Borges A, Abreu AC, Dias C, Saavedra MJ, Borges F, Simões M. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules. 2016;21(7):877.
  • Hassan MI, Shajee B, Waheed A, Ahmad F, Sly WS. Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem. 2013;21(6):1570–1582.
  • Hirakawa Y, Senda M, Fukuda K, Yu HY, Ishida M, Taira M, Kinbara K, Senda T. Characterization of a novel type of carbonic anhydrase that acts without metal cofactors. BMC Biol. 2021;19(1):15.
  • Ghorai S, Pulya S, Ghosh K, Panda P, Ghosh B, Gayen S. Structure-activity relationship of human carbonic anhydrase-II inhibitors: detailed insight for future development as anti-glaucoma agents. Bioorg Chem. 2020;95:103557.
  • Dar’in D, Kantin G, Kalinin S, Sharonova T, Bunev A, Ostapenko GI, Nocentini A, Sharoyko V, Supuran CT, Krasavin M. Investigation of 3-sulfamoyl coumarins against cancer-related IX and XII isoforms of human carbonic anhydrase as well as cancer cells leads to the discovery of 2-oxo-2H-benzo [h] chromene-3-sulfonamide – a new caspase-activating proapoptotic agent. Eur J Med Chem. 2021;222:113589.
  • Akocak S, Ilies MA. Next-generation primary sulfonamide carbonic anhydrase inhibitors. Target Carbon Anhydrases. 2014;1:35.
  • Akocak S, Lolak N, Bua S, Supuran CT. Discovery of novel 1, 3-diaryltriazene sulfonamides as carbonic anhydrase I, II, VII, and IX inhibitors. J Enzyme Inhib Med Chem. 2018;33(1):1575–1580.
  • Elimam DM, Elgazar AA, Bonardi A, Abdelfadil M, Nocentini A, El-Domany RA, Abdel-Aziz HA, Badria FA, Supuran CT, Eldehna WM. Natural inspired piperine-based sulfonamides and carboxylic acids as carbonic anhydrase inhibitors: design, synthesis and biological evaluation. Eur J Med Chem. 2021;225:113800.
  • Angeli A, Carta F, Nocentini A, Winum J-Y, Zalubovskis R, Akdemir A, Onnis V, Eldehna WM, Capasso C, Simone GD, et al. Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment. Metabolites. 2020;10(10):412.
  • Gieling RG, Williams KJ. Carbonic anhydrase IX as a target for metastatic disease. Bioorg Med Chem. 2013;21(6):1470–1476.
  • Supuran CT, Alterio V, Di Fiore A, D' Ambrosio K, Carta F, Monti SM, De Simone G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: three for the price of one. Med Res Rev. 2018;38(6):1799–1836.
  • Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, Kyle A, Auf Dem Keller U, Leung S, Huntsman D, et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 2011;71(9):3364–3376.
  • Winum J, Rami M, Scozzafava A, Montero J, Supuran C. Carbonic anhydrase IX: a new druggable target for the design of antitumor agents. Med Res Rev. 2008;28(3):445–463.
  • Chiche J, Ilc K, Laferriere J, Trottier E, Dayan F, Mazure NM, Brahimi-Horn MC, Pouysségur J. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 2009;69(1):358–368.
  • Ibrahim HS, Allam HA, Mahmoud WR, Bonardi A, Nocentini A, Gratteri P, Ibrahim ES, Abdel-Aziz HA, Supuran CT. Dual-tail arylsulfone-based benzenesulfonamides differently match the hydrophobic and hydrophilic halves of human carbonic anhydrases active sites: selective inhibitors for the tumor-associated hCA IX isoform. Eur J Med Chem. 2018;152:1–9.
  • Liguori F, Carradori S, Ronca R, Rezzola S, Filiberti S, Carta F, Turati M, Supuran CT. Benzenesulfonamides with different rigidity-conferring linkers as carbonic anhydrase inhibitors: an insight into the antiproliferative effect on glioblastoma, pancreatic, and breast cancer cells. J Enzyme Inhib Med Chem. 2022;37(1):1857–1869.
  • Pacchiano F, Carta F, McDonald PC, Lou Y, Vullo D, Scozzafava A, Dedhar S, Supuran CT. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J Med Chem. 2011;54(6):1896–1902.
  • Pacchiano F, Aggarwal M, Avvaru BS, Robbins AH, Scozzafava A, McKenna R, Supuran CT. Selective hydrophobic pocket binding observed within the carbonic anhydrase II active site accommodate different 4-substituted-ureido-benzenesulfonamides and correlate to inhibitor potency. Chem Commun (Camb). 2010;46(44):8371–8373.
  • Abo-Ashour MF, Eldehna WM, Nocentini A, Ibrahim HS, Bua S, Abdel-Aziz HA, Abou-Seri SM, Supuran CT. Novel synthesized SLC-0111 thiazole and thiadiazole analogues: determination of their carbonic anhydrase inhibitory activity and molecular modeling studies. Bioorg Chem. 2019;87:794–802.
  • Qaiser S, Mubarak MS, Ashraf S, Saleem M, Ul-Haq Z, Safdar M, Rauf A, Abu-Izneid T, Qadri MI, Maalik A. Benzilydene and thiourea derivatives as new classes of carbonic anhydrase inhibitors: an in vitro and molecular docking study. Med Chem Res. 2021;30(3):552–563.
  • Saeed A, Khan SU, Saeed M, Shabir G, Hasan A, Khera RA, El-Seedi H, Halim SA, Khan A, Al-Harrasi A, et al. Synthesis of novel hybrid pharmacophore of N-((4 sulfamoylphenyl(carbamothioyl)alkanamides as potent carbonic anhydrase-II and 15-lipoxygenase inhibitors. Drug Dev. Res. 2022;83:745–754.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase: I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem. 1971;246(8):2561–2573.
  • Elbadawi MM, Eldehna WM, Nocentini A, Abo-Ashour MF, Elkaeed EB, Abdelgawad MA, Alharbi KS, Abdel-Aziz HA, Supuran CT, Gratteri P, et al. Identification of N-phenyl-2-(phenylsulfonyl)acetamides/propanamides as new SLC-0111 analogues: Synthesis and evaluation of the carbonic anhydrase inhibitory activities. Eur J Med Chem. 2021;218:113360.
  • Plutín AM, Suárez M, Ochoa E, Machado T, Mocelo R, Concellón JM, Rodríguez-Solla H. Synthesis of new acyl, furoyl, and benzoylthiocarbamates as polydentate systems. Structural study of isopropyl N-(2-furoyl) thiocarbamate. Tetrahedron. 2005;61:5812–5817.
  • Larsen JS, Zahran MA, Pedersen EB, Nielsen C. Synthesis of triazenopyrazole derivativesas potential inhibitors of HIV-1. Monatshefte Fuer Chem. 1999;130(9):1167–1173.
  • Nitulescu GM, Draghici C, Olaru OT. New potential antitumor pyrazole derivatives: synthesis and cytotoxic evaluation. Int J Mol Sci. 2013;14(11):21805–21818.
  • Saeed A, Mumtaz A, Ishida H. Synthesis, characterization of some new 1-aroyl-3-(4-aminosulfonylphenyl) thioureas and crystal structure of 1-(3, 4, 5-trimethoxybenzoyl)-3-(4-aminosulfonylphenyl) thiourea. J Sulfur Chem. 2011;32(1):45–54.
  • Oudah KH, Najm MAA, Samir N, Serya RAT, Abouzid KAM. Design, synthesis and molecular docking of novel pyrazolo[1,5-a][1,3,5]triazine derivatives as CDK2 inhibitors. Bioorg Chem. 2019;92:103239.
  • Carradori S, Guglielmi P. Mechanisms of action of carbonic anhydrase inhibitors: compounds that bind “out of the binding site” and compounds with an unknown mechanism of action. New York (NY): Elsevier Inc.; 2019. https://doi.org/10.1016/B978-0-12-816476-1.00012-5
  • Mahdavi M, Shirazi MS, Taherkhani R, Saeedi M, Alipour E, Moghadam FH, Moradi A, Nadri H, Emami S, Firoozpour L, et al. Synthesis, biological evaluation and docking study of 3-aroyl-1-(4-sulfamoylphenyl)thiourea derivatives as 15-lipoxygenase inhibitors. Eur J Med Chem. 2014;82:308–313.
  • El-Sayed NS, El-Bendary ER, El-Ashry SM, El-Kerdawy MM. Synthesis and antitumor activity of new sulfonamide derivatives of thiadiazolo [3, 2-a] pyrimidines. Eur J Med Chem. 2011;46(9):3714–3720.
  • Saeed S, Bhatti MH, Yunus U, Jones PG. Ethyl 4-(3-benzoylthioureido) benzoate. Acta Crystallogr Sect E Struct Rep Online. 2008;64(Pt 8):o1485.
  • Vullo D, Carta F. Mechanisms of action of carbonic anhydrase inhibitors: zinc binders, in: Carbon. Anhydrases. New York (NY): Elsevier; 2019. p. 187–222.
  • Heravi YE, Bua S, Nocentini A, Del Prete S, Saboury AA, Sereshti H, Capasso C, Gratteri P, Supuran CT. Inhibition of Malassezia globosa carbonic anhydrase with phenols. Bioorg Med Chem. 2017;25(9):2577–2582.
  • Zhang Z, Lau J, Zhang C, Colpo N, Nocentini A, Supuran CT, Bénard F, Lin K-S. Design, synthesis and evaluation of 18F-labeled cationic carbonic anhydrase IX inhibitors for PET imaging. J Enzyme Inhib Med Chem. 2017;32(1):722–730.
  • Nocentini A, Supuran CT. Chapter 1 - Carbonic anhydrases: an overview. In: Supuran CT, Nocentini A, editors. Carbon Anhydrases. Academic Press; 2019. p. 3–16.
  • Ebrahimi H, Hadi JS, Al-Ansari HS. A new series of Schiff bases derived from sulfa drugs and indole-3-carboxaldehyde: synthesis, characterization, spectral and DFT computational studies. J Mol Struct. 2013;1039:37–45.
  • Nocentini A, Bua S, Lomelino CL, McKenna R, Menicatti M, Bartolucci G, Tenci B, Di Cesare Mannelli L, Ghelardini C, Gratteri P, et al. Discovery of new sulfonamide carbonic anhydrase IX inhibitors incorporating nitrogenous bases. ACS Med Chem Lett. 2017;8(12):1314–1319.
  • Nocentini A, Vullo D, Del Prete S, Osman SM, Alasmary FAS, AlOthman Z, Capasso C, Carta F, Gratteri P, Supuran CT. Inhibition of the β-carbonic anhydrase from the dandruff-producing fungus Malassezia globosa with monothiocarbamates. J Enzyme Inhib Med Chem. 2017;32(1):1064–1070.
  • Naqvi A, Shahnawaaz M, Rao AV, Seth DS, Sharma NK. Synthesis of Schiff bases via environmentally benign and energy-efficient greener methodologies. E-Journal Chem. 2009;6(s1):S75–S78.
  • Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov. 2011;10(10):767–777.
  • Vullo D, Lehneck R, Donald WA, Pöggeler S, Supuran CT. Sulfonamide inhibition studies of the β-class carbonic anhydrase CAS3 from the filamentous Ascomycete Sordaria macrospora. Molecules. 2020;25(5):1036.