1,063
Views
1
CrossRef citations to date
0
Altmetric
Brief Report

Design, synthesis and antitumor activity of 5-trifluoromethylpyrimidine derivatives as EGFR inhibitors

, , , ORCID Icon, & ORCID Icon
Pages 2742-2754 | Received 24 Jul 2022, Accepted 20 Sep 2022, Published online: 29 Sep 2022

References

  • Chong CR, Janne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med. 2013;19(11):1389–400.
  • Ayati A, Moghimi S, Salarinejad S, et al. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg Chem. 2020;99:103811.
  • Ohashi K, Maruvka YE, Michor F, Pao W. Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J Clin Oncol. 2013;31(8):1070–80.
  • Yewale C, Baradia D, Vhora I, et al. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials. 2013;34(34):8690–707.
  • Huang L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B. 2015;5(5):390–401.
  • Chen X, Liang R, Zhu X. Anti-EGFR therapies in nasopharyngeal carcinoma. Biomed Pharmacother. 2020;131:110649.
  • Fischer T, Najjar A, Totzke F, et al. Discovery of novel dual inhibitors of receptor tyrosine kinases EGFR and PDGFR-β related to anticancer drug resistance. J Enzyme Inhib Med Chem. 2018;33(1):1–8.
  • Sos ML, Rode HB, Heynck S, et al. Chemogenomic profiling provides insights into the limited activity of irreversible EGFR Inhibitors in tumor cells expressing the T790M EGFR resistance mutation. Cancer Res. 2010;70(3):868–74.
  • Hanan EJ, Eigenbrot C, Bryan MC, et al. Discovery of selective and noncovalent diaminopyrimidine-based inhibitors of epidermal growth factor receptor containing the T790M resistance mutation. J Med Chem. 2014;57(23):10176–91.
  • Le Y, Gan Y, Fu Y, et al. Design, synthesis and in vitro biological evaluation of quinazolinone derivatives as EGFR inhibitors for antitumor treatment. J Enzyme Inhib Med Chem. 2020;35(1):555–64.
  • Zhang T, Qu R, Chan S, et al. Discovery of a novel third-generation EGFR inhibitor and identification of a potential combination strategy to overcome resistance. Mol Cancer. 2020;19(1):90–105.
  • Xiao Q, Qu R, Gao D, et al. Discovery of 5-(methylthio)pyrimidine derivatives as L858R/T790M mutant selective epidermal growth factor receptor (EGFR) inhibitors. Bioorg Med Chem. 2016;24(12):2673–80.
  • Khattab RR, Alshamari AK, Hassan AA, et al. Click chemistry based synthesis, cytotoxic activity and molecular docking of novel triazole-thienopyrimidine hybrid glycosides targeting EGFR. J Enzyme Inhib Med Chem. 2021;36(1):504–16.
  • Othman IMM, Alamshany ZM, Tashkandi NY, et al. New pyrimidine and pyrazole-based compounds as potential EGFR inhibitors: synthesis, anticancer, antimicrobial evaluation and computational studies. Bioorg Chem. 2021;114:105078.
  • Abedinifar F, Babazadeh Rezaei E, Biglar M, et al. Recent strategies in the synthesis of thiophene derivatives: highlights from the 2012-2020 literature. Mol Divers. 2021;25(4):2571–604.
  • Pathania S, Chawla PA. Thiophene-based derivatives as anticancer agents: an overview on decade’s work. Bioorg Chem. 2020;101:104026.
  • Keri RS, Chand K, Budagumpi S, et al. An overview of benzo[b]thiophene-based medicinal chemistry. Eur J Med Chem. 2017;138:1002–33.
  • Zhang W, Fan Y-F, Cai C-Y, et al. Olmutinib (BI1482694/HM61713), a novel epidermal growth factor receptor tyrosine kinase inhibitor, reverses ABCG2-mediated multidrug resistance in cancer cells. Front Pharmacol. 2018;9:1097–110.
  • Mudududdla R, Guru SK, Wani A, et al. 3-(Benzo[d][1,3]dioxol-5-ylamino)-N-(4-fluorophenyl)thiophene-2-carboxamide overcomes cancer chemoresistance via inhibition of angiogenesis and P-glycoprotein efflux pump activity. Org Biomol Chem. 2015;13(14):4296–4309.
  • Dawood DH, Nossier ES, Abdelhameed MF, et al. Design, synthesis, anti-inflammatory evaluation and molecular docking of novel thiophen-2-ylmethylene-based derivatives as potential TNF-α production inhibitors. Bioorg Chem. 2022;122:105726.
  • Gomez-Monterrey I, Campiglia P, Aquino C, et al. Design, synthesis, and cytotoxic evaluation of acyl derivatives of 3-aminonaphtho[2,3-b]thiophene-4,9-dione, a quinone-based system. J Med Chem. 2011;54(12):4077–91.
  • Othman DIA, Selim KB, El-Sayed MA-A, et al. Design, synthesis and anticancer evaluation of new substituted thiophene-quinoline derivatives. Bioorg Med Chem. 2019;27(19):115026.
  • Saito Y, Taniguchi Y, Hirazawa S, et al. Effects of substituent pattern on the intracellular target of antiproliferative benzo[b]thiophenyl chromone derivatives. Eur J Med Chem. 2021;222:113578.
  • Yao T-T, Xie J-F, Liu X-G, et al. Integration of pharmacophore mapping and molecular docking in sequential virtual screening: towards the discovery of novel JAK2 inhibitors. RSC Adv. 2017;7(17):10353–60.
  • Liang Z, Ai J, Ding X, et al. Anthraquinone derivatives as potent inhibitors of c-Met kinase and the extracellular signaling pathway. ACS Med Chem Lett. 2013;4(4):408–13.
  • Gong L-L, Fang L-H, Peng J-H, et al. Integration of virtual screening with high-throughput screening for the identification of novel Rho-kinase I inhibitors. J Biotechnol. 2010;145(3):295–303.
  • Yan L, Wang Q, Liu L, Le Y. Design, synthesis and biological evaluation of a series of dianilinopyrimidines as EGFR inhibitors. J Enzyme Inhib Med Chem. 2022;37(1):832–43.
  • Wang L, Fang K, Cheng J, et al. Scaffold hopping of natural product evodiamine: discovery of a novel antitumor scaffold with excellent potency against colon cancer. J Med Chem. 2020;63(2):696–713.
  • Papakyriakou A, Katsarou ME, Belimezi M, et al. Discovery of potent vascular endothelial growth factor receptor-2 inhibitors. ChemMedChem. 2010;5(1):118–129.
  • Zhang Y, Wang Q, Li L, et al. Synthesis and preliminary structure-activity relationship study of 3-methylquinazolinone derivatives as EGFR inhibitors with enhanced antiproliferative activities against tumour cells. J Enzyme Inhib Med Chem. 2021;36(1):1205–16.
  • Astashkina A, Mann B, Grainger DW. A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther. 2012;134(1):82–106.
  • Arkin MR, Tang Y, Wells JA. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol. 2014;21(9):1102–14.
  • Zhang S, Yan Z, Huang Y, et al. HelixADMET: a robust and endpoint extensible ADMET system incorporating self-supervised knowledge transfer. Bioinformatics. 2022;38(13):3444–53.
  • Guan L, Yang H, Cai Y, et al. ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm. 2019;10(1):148–57.
  • Barraza SJ, Denmark SE. Synthesis, reactivity, functionalization, and ADMET properties of silicon-containing nitrogen heterocycles. J Am Chem Soc. 2018;140(21):6668–84.
  • Wang J, Urban L, Bojanic D. Maximising use of in vitro ADMET tools to predict in vivo bioavailability and safety. Expert Opin Drug Metab Toxicol. 2007;3(5):641–65.
  • Xiong G, Wu Z, Yi J, et al. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021;49:5–14.
  • Wang Z, Cherukupalli S, Xie M, et al. Contemporary medicinal chemistry strategies for the discovery and development of novel HIV-1 non-nucleoside reverse transcriptase inhibitors. J Med Chem. 2022;65(5):3729–3757.
  • Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2(4):277–88.
  • Zhou Y, Li Y, Ni H-M, et al. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells. Toxicol Appl Pharmacol. 2016;310:140–9.
  • Kritikou I, Giannopoulou E, Koutras AK, et al. The combination of antitumor drugs, exemestane and erlotinib, induced resistance mechanism in H358 and A549 non-small cell lung cancer (NSCLC) cell lines. Pharm Biol. 2014;52(4):444–52.
  • Wang C, Xu S, Peng L, et al. Design, synthesis and biological evaluation of novel 4-anlinoquinazoline derivatives as EGFR inhibitors with the potential to inhibit the gefitinib-resistant nonsmall cell lung cancers. J Enzyme Inhib Med Chem. 2019;34(1):203–17.
  • Liang Y, Zhang T, Ren L, et al. Cucurbitacin IIb induces apoptosis and cell cycle arrest through regulating EGFR/MAPK pathway. Environ Toxicol Pharmacol. 2021;81:103542.
  • Lin TH, Lin GL. An anchor-dependent molecular docking process for docking small flexible molecules into rigid protein receptors. J Chem Inf Model. 2008;48(8):1638–55.
  • Caballero J. The latest automated docking technologies for novel drug discovery. Expert Opin Drug Discov. 2021;16(6):625–45.
  • Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. IJMS. 2019;20(18):4331–4351.
  • Yan L, Li Y, Deng M, et al. Design, synthesis and biological activities of compounds containing 1,3,4-oxadiazole or 1,3,4-thiadiazole. Chin J Org Chem. 2020;40(3):731–9.
  • Ahmed EA, Mohamed MFA, Omran OA. Novel quinoxaline derivatives as dual EGFR and COX-2 inhibitors: synthesis, molecular docking and biological evaluation as potential anticancer and anti-inflammatory agents. RSC Adv. 2022;12(39):25204–16.
  • Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem. 2002;277(48):46265–72.
  • To C, Jang J, Chen T, et al. Single and dual targeting of mutant EGFR with an allosteric inhibitor. Cancer Discov. 2019;9(7):926–43.