1,898
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Novel N-methylsulfonyl-indole derivatives: biological activity and COX-2/5-LOX inhibitory effect with improved gastro protective profile and reduced cardio vascular risks

, , , , &
Pages 246-266 | Received 19 Jul 2022, Accepted 02 Nov 2022, Published online: 01 Dec 2022

References

  • Meshram MA, Bhise UO, Makhal PN, Kaki VR. Synthetically-tailored and nature-derived dual COX-2/5-LOX inhibitors: structural aspects and SAR. Eur J Med Chem. 2021;225:113804–113831.
  • P JJ, Manju SL, Ethiraj KR, Elias G. Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: a structure-based approach. Eur J Pharm Sci. 2018;121:356–381.
  • Lamie PF, Ali WAM, Bazgier V, Rárová L. Novel N-substituted indole Schiff bases as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase enzymes: synthesis, biological activities in vitro and docking study. Eur J Med Chem. 2016;123:803–813.
  • Archana K, Singh RK. Medicinal chemistry of indole derivatives: current to future therapeutic prospectives. Bioorg Chem. 2019;89:103021–103056.
  • Sehajpal S, Prasad DN, Singh RK. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): a long march towards synthesis of safer NSAIDs. Mini Rev Med Chem. 2018;18(14):1199–1219.
  • Perrone MG, Scilimati A, Simone L, Vitale P. Selective COX-1 inhibition: a therapeutic target to be reconsidered. Curr Med Chem. 2010;17(32):3769–3805.
  • Sehajpal S, Prasad DN, Singh RK. Novel ketoprofen-antioxidants mutual codrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, kinetic and pharmacological evaluation. Arch Pharm. 2019; 352(7):e1800339.
  • Huang Y, Zhang B, Li J, Liu H, Zhang Y, Yang Z, Liu W. Design, synthesis, biological evaluation and docking study of novel indole-2-amide as anti-inflammatory agents with dual inhibition of COX and 5-LOX. Eur J Med Chem. 2019;180:41–50.
  • Shaaban MA, Kamal AM, Faggal SI, Farag NA, Aborehab NM, Elsahar AE, Mohamed KO. Design, synthesis, and biological evaluation of new pyrazoloquinazoline derivatives as dual COX‐2/5‐LOX inhibitors. Arch Pharm. 2020;353(11):2000027–2000044.
  • Lamie PF, Philoppes JN, Azouz AA, Safwat NM. Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study. J Enzyme Inhib Med Chem. 2017;32 (1):805–820.
  • Bray MA, Ford AW, Smith MJH. Leukotriene B4: an inflammatory mediator in vivo. Prostaglandins. 1981;22(2):213–222.
  • Penrose JF, Austen KF, Lam BK, editors. Inflammation. Basic Princ Clin Correl. 1999:361–372.
  • Lamie PF, Philoppes JN, Rárová L. Design, synthesis, and biological evaluation of novel 1, 2‐diaryl‐4‐substituted‐benzylidene‐5(4H)‐imidazolone derivatives as cytotoxic agents and COX‐2/LOX inhibitors. Arch Pharm Chem Life Sci. 2018;351(3–4):1700311–1700322.
  • Morphy R, Rankovic Z. Medicinal chemistry approaches for multitarget drugs. Burger Med Chem Drug Discov. 2003:249–274.
  • Charlier C, Michaux C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur J Med Chem. 2003;38(7–8):645–659.
  • Sandes SMS, Heimfarth L, Brito RG, Santos PL, Gouveia DN, Carvalho AMS, Quintans JSS, da Silva-Júnior EF, de Aquino TM, França PHB, et al. Evidence for the involvement of TNF-α, IL-1β and IL-10 in the antinociceptive and anti-inflammatory effects of indole-3-guanylhydrazone hydrochloride, an aromatic aminoguanidine, in rodents. Chem Biol Interact. 2018;286:1–10.
  • Kwon TH, Yoon IH, Shin J-S, Lee YH, Kwon BJ, Lee K-T, Lee YS. Synthesis of indolyl-3-acetonitrile derivatives and their inhibitory effects on nitric oxide and PGE2 productions in LPS-induced RAW 264.7 cells. Bioorg Med Chem Lett. 2013;23(9):2571–2574.
  • Abdelazeem AH, El-Saadi MT, Safi El-Din AG, Omar HA, El-Moghazy SM. Design, synthesis and analgesic/anti-inflammatory evaluation of novel diarylthiazole and diarylimidazole derivatives towards selective COX-1 inhibitors with better gastric profile. Bioorg Med Chem. 2017;25(2):665–676.
  • Gupta S, Sarotra P, Aggarwal R, Dutta N, Agnihotri N. Role of oxidative stress in celecoxib-induced renal damage in Wistar rats. Dig Dis Sci. 2007;52(11):3092–3098.
  • Lamie PF, Azmey AF. Synthesis and biological evaluation of tetrazole derivatives as TNF-α, IL-6 and COX-2 inhibitors with antimicrobial activity: computational analysis, molecular modeling study and region-specific cyclization using 2D NMR tools. Bioorg Chem. 2019; 92:103301–103317.
  • Song M, Wang S, Wang Z, Fu Z, Zhou S, Cheng H, Liang Z, Deng X. Synthesis, antimicrobial and cytotoxic activities, and molecular docking studies of N-arylsulfonylindoles containing an aminoguanidine, a semicarbazide, and a thiosemicarbazide moiety. Eur J Med Chem. 2019;166:108–118.
  • Gupta A, Singh R, Sonar PK, Saraf SK. Novel 4-thiazolidinone derivatives as anti-infective agents: synthesis, characterization, and antimicrobial evaluation. Biochem Res Int. 2016;2016:8086762–8086769.
  • Arunasree MK, Rizvi A. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor. Antimicrob Agents Chemother. 2011;55(1):439–442.
  • Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89–96.
  • Lamie PF, Phillopes JN, El-Gendy AO, Rarova L, Gruz J. Design, synthesis and evaluation of novel phthalimide derivatives as in vitro anti-microbial, anti-oxidant and anti-inflammatory agents. Molecules. 2015;20(9):16620–16642.
  • Kumari M, Singh RK. Synthesis, molecular docking and biological evaluation of N-substituted indole derivatives as potential anti-Inflammatory and antioxidant agents. Chem Biodivers. 2022;19(9):202200290.
  • Abo-Ashour MF, Eldehna WM, George RF, Abdel-Aziz MM, Elaasser MM, Abdel Gawad NM, Gupta A, Bhakta S, Abou-Seri SM. Novel indole-thiazolidinone conjugates: design, synthesis and whole- cell phenotypic evaluation as a novel class of antimicrobial agents. Eur J Med Chem. 2018;160:49–60.
  • Kumari A, Singh RK. Synthesis, molecular docking and ADME prediction of 1H-indole/5-substituted indole derivatives as potential antioxidant and anti-inflammatory agents. MC. 2022;18.
  • Garg V, Maurya RK, Thanikachalam PV, Bansal G, Monga V. An insight into the medicinal perspective of synthetic analogs of indole: a review. Eur J Med Chem. 2019;180:562–612.
  • Choppara P, Prasad YV, Rao CV, Hari Krishna K, Trimoorthulu G, Maheswara Rao GU, Venkateswara Rao J, Bethu MS, Murthy YLN. Design, synthesis of novel N prenylated indole-3-carbazones and evaluation of in vitro cytotoxicity and 5-LOX inhibition activities. Arab J Chem. 2019;12 (8):2328–2335.
  • Liu L, Chen Y-Y, Qin X-J, Wang B, Jin Q, Liu Y-P, Luo X-D. Antibacterial monoterpenoid indole alkaloids from Alstonia scholaris cultivated in temperate zone. Fitoterapia. 2015;105:160–164.
  • Cihan-Üstündağ G, Gürsoy E, Naesens L, Ulusoy-Güzeldemirci N, Çapan G. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones. Bioorg Med Chem. 2016;24(2):240–246.
  • Sevinçli ZŞ, Duran GN, Özbil M, Karalı N. Synthesis, molecular modeling and antiviral activity of novel 5-fluoro-1H-indole-2,3-dione 3-thiosemicarbazones. Bioorg Chem. 2020;104:104202–104214.
  • Güze Ö, Karalı N, Salman A. Synthesis and antituberculosis activity of 5-methyl/trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazone derivatives. Bioorg Med Chem. 2008;16(19):8976–8987.
  • de Oliveira JF, Lima TS, Vendramini-Costa DB, de Lacerda Pedrosa SCB, Lafayette EA, da Silva RMF, de Almeida SMV, de Moura RO, Ruiz ALTG, de Carvalho JE, et al. Thiosemicarbazones and 4-thiazolidinones indole-based derivatives: Synthesis, evaluation of antiproliferative activity, cell death mechanisms and topoisomerase inhibition assay. Eur J Med Chem. 2017;136:305–314.
  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–79.
  • Stengel DB, Connan S, editors. Natural products from marine algae: Methods and protocols. New York (NY): Springer; 2015. (Methods in Molecular Biology; MIMB, vol 1308).
  • Heatley NG. A method for the assay of penicillin. Biochem J. 1944;38(1):61–65.
  • Boly R, Lamkami T, Lompo M, et al. DPPH free radical scavenging activity of two extracts from Agelanthus dodoneifolius (Loranthaceae) leaves. Int J Tox Pharmacol Res. 2016; 8 (1):29–34.
  • Kenneth S, T. Belete M. A simple, inexpensive method for preparing cell lysates suitable for downstream reverse transcription quantitative PCR. Sci Rep. 2014;4(1):4659–4666.
  • Yamamoto S. Mammalian lipoxygenases: molecular structures and functions. Biochim Biophys Acta. 1992;1128(2–3):117–131.
  • Gaffney BJ. Lipoxygenases: structural principles and spectroscopy. Annu Rev Biophys Biomol Struct. 1996;25:431–459.
  • Zhang ZH, Chung TDY, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4(2):67–73.
  • Adedapo AA, Sofidiya MO, Maphosa V, et al. Antiinflammatory and analgesic activities of the aqueous extract of Cussonia Paniculatastem bark. Rec Nat Prod. 2008;2:46–53.
  • Cho CH, Ogle CW. Cholinergic-mediated gastric mast cell degranulation with subsequent histamine H1-and H2 receptor activation in stress ulceration in rats. Eur J Pharmacol. 1979;55(1):23–33.
  • Bancroft JD, Gamble M. Theory and practice of histological techniques. 6th Edition, China: Churchill Livingstone Elsevier, Elsevier Health Sciences.
  • Docherty JC, Gerrard JM. An enzyme-linked immunosorbent assay for 6-Keto PGF alfa. Prostaglandins. 1986;31(3):375–383.
  • Rao PS, Lukes JJ, Ayres SM, Mueller H. New manual and automated method for determining activity of creatine kinase isoenzyme MB, by use of dithiothreitol: clinical applications. Clin Chem. 1975;21(11):1612–1618.
  • Martinek RG. A rapid ultraviolet spectrophotometric lactic dehydrogenase assay. Clin Chim Acta. 1972;40(1):91–99.
  • Hassanein EHM, Abd El-Ghafar OAM, Ahmed MA, Sayed AM, Gad-Elrab WM, Ajarem JS, Allam AA, Mahmoud AM. Edaravone and acetovanillone upregulate Nrf2 and PI3K/Akt/mTOR signaling and prevent cyclophosphamide cardiotoxicity in rats. Drug Des Devel Ther. 2020;14:5275–5288.
  • [cited 2022 Feb 20]. Available from: https://www.molinspiration.com/.
  • [cited 2022 Feb 20]. Available from: https://preadmet.qsarhub.com/.
  • [cited 2022 Feb 21]. Available from: http://www.swissadme.ch/.
  • Lamie PF, Philoppes JN. Design, synthesis, stereochemical determination, molecular docking study, in silico pre-ADMET prediction and anti-proliferative activities of indole-pyrimidine derivatives as Mcl-1 inhibitors. Bioorg Chem. 2021;116:105335–105351.
  • Ahmad S, Panda BP, Fahim M, Dhyani N, Dubey K. Ameliorative effect of beraprost sodium on celecoxib induced cardiotoxicity in rats. Iran J Pharm Res. 2018;17(1):155–163.