1,913
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Synthesis and antimicrobial activity of aminoalkyl resveratrol derivatives inspired by cationic peptides

ORCID Icon, , ORCID Icon, , , ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 267-281 | Received 06 Jul 2022, Accepted 07 Nov 2022, Published online: 04 Jan 2023

References

  • Inagaki K, Lucar J, Blackshear C, Hobbs CV. Methicillin-susceptible and methicillin-resistant staphylococcus aureus bacteremia: nationwide estimates of 30-day readmission, in-hospital mortality, length of stay, and cost in the United States. Clin Infect Dis. 2019;69 (12):2112–2118.
  • Theuretzbacher U, Bush K, Harbarth S, Paul M, Rex JH, Tacconelli E, Thwaites GE. Critical analysis of antibacterial agents in clinical development. Nat Rev Microbiol. 2020;18(5):286–298.
  • Theuretzbacher U, Outterson K, Engel A, Karlén A. The global preclinical antibacterial pipeline. Nat Rev Microbiol. 2020;18(5):275–285.
  • May KL, Grabowicz M. The bacterial outer membrane is an evolving antibiotic barrier. Proc Natl Acad Sci U S A. 2018;115(36):8852–8854.
  • Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. WHO 2017.
  • Goff DA, Kullar R, Goldstein EJC, Gilchrist M, Nathwani D, Cheng AC, Cairns KA, Escandón-Vargas K, Villegas MV, Brink A, et al. A global call from five countries to collaborate in antibiotic stewardship: united we succeed, divided we might fail. Lancet Infect Dis. 2017;17(2):e56–e63. (16)30386-3.
  • Ciumac D, Gong H, Hu X, Lu JR. Membrane targeting cationic antimicrobial peptides. J Colloid Interface Sci. 2019;537:163–185.
  • Vaara M. Polymyxins and their potential next generation as therapeutic antibiotics. Front Microbiol. 2019;10:1689.
  • Mollica A, Macedonio G, Stefanucci A, Costante R, Carradori S, Cataldi V, Giulio M, Cellini L, Silvestri R, Giordano C, et al. Arginine- and lysine-rich peptides: synthesis, characterization and antimicrobial activity. Lett. Drug Des. Discov. 2017;14:1–7.
  • Ledger EVK, Sabnis A, Edwards AM. Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort. Microbiology (Reading). 2022;168 (2):001136.
  • Grein F, Müller A, Scherer KM, Liu X, Ludwig KC, Klöckner A, Strach M, Sahl H-G, Kubitscheck U, Schneider T. Ca2+-daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. Nat Commun. 2020;11(1):1455.
  • Falagas ME, Kasiakou SK, Saravolatz LD. Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections. Clin Infect Dis. 2005;40(9):1333–1341.
  • Müller A, Wenzel M, Strahl H, Grein F, Saaki TNV, Kohl B, Siersma T, Bandow JE, Sahl H-G, Schneider T, et al. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci U S A. 2016;113(45):E7077–E7086.
  • Lin S, Wade JD, Liu S. De novo design of flavonoid-based mimetics of cationic antimicrobial peptides: discovery, development, and applications. Acc Chem Res. 2021;54(1):104–119.
  • Spaeth A, Graeler A, Maisch T, Plaetzer K. CureCuma-cationic curcuminoids with improved properties and enhanced antimicrobial photodynamic activity. Eur J Med Chem. 2018;159:423–440.
  • Xu G-L, Liu F, Zhao Y, Ao G-Z, Xi L, Ju M, Xue T. Biological evaluation of 2-(4-amino-phenyl)-3-(3,5-dihydroxylphenyl) propenoic acid. Basic Clin Pharmacol Toxicol. 2009; 105 (5):350–356.
  • Fujita Y, Islam R, Sakai K, Kaneda H, Kudo K, Tamura D, Aomatsu K, Nagai T, Kimura H, Matsumoto K, et al. Aza-derivatives of resveratrol are potent macrophage migration inhibitory factor inhibitors. Invest New Drugs. 2012;30(5):1878–1886.
  • Hernández-Valdepeña MA, Hernández-Valencia CG, Labra-Vázquez P, Wacher C, Díaz-Ruiz G, Vázquez A, Pedraza-Chaverri J, Shirai K, Rosas-Aburto A, Vivaldo-Lima E, et al. Antioxidant and antimicrobial material by grafting of l-arginine onto enzymatic poly(gallic acid). Mater Sci Eng C Mater Biol Appl. 2021;121:111650.
  • Biscussi B, Richmond V, Baier CJ, Mañez PA, Murray AP. Design and microwave-assisted synthesis of aza-resveratrol analogs with potent cholinesterase inhibition. CNS Neurol Disord Drug Targets. 2020;19(8):630–641.
  • Roberti M, Pizzirani D, Simoni D, Rondanin R, Baruchello R, Bonora C, Buscemi F, Grimaudo S, Tolomeo M. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J Med Chem. 2003;46(16):3546–3554.
  • Chillemi R, Sciuto S, Spatafora C, Tringali C. Anti-tumor properties of stilbene-based resveratrol analogues: recent results. Nat Prod Commun . 2007;2(4):1934578X0700200.
  • Paul S, Mizuno CS, Lee HJ, Zheng X, Chajkowisk S, Rimoldi JM, Conney A, Suh N, Rimando AM. In vitro and in vivo studies on stilbene analogs as potential treatment agents for colon cancer. Eur J Med Chem. 2010;45(9):3702–3708.
  • Siddiqui A, Dandawate P, Rub R, Padhye S, Aphale S, Moghe A, Jagyasi A, Venkateswara Swamy K, Singh B, Chatterjee A, et al. Novel aza-resveratrol analogs: synthesis, characterization and anticancer activity against breast cancer cell lines. Bioorg Med Chem Lett. 2013;23(3):635–640.
  • Wang S, Willenberg I, Krohn M, Hecker T, Meckelmann S, Li C, Pan Y, Schebb NH, Steinberg P, Empl MT. Growth-inhibiting activity of resveratrol imine analogs on tumor cells in vitro. Plos One. 2017;12(1):e0170502.
  • Lizard G, Latruffe N, Vervandier-Fasseur D. Aza- and azo-stilbenes: bio-isosteric analogs of resveratrol. Molecules. 2020;25(3):605.
  • Tolomeo M, Roberti M, Scapozza L, Tarantelli C, Giacomini E, Titone L, Saporito L, Di Carlo P, Colomba C. TTAS a new stilbene derivative that induces apoptosis in leishmania infantum. Exp Parasitol. 2013;133(1):37–43.
  • Belmonte-Reche E, Peñalver P, Caro-Moreno M, Mateos-Martín ML, Adán N, Delgado M, González-Rey E, Morales JC. Silyl resveratrol derivatives as potential therapeutic agents for neurodegenerative and neurological diseases. Eur J Med Chem. 2021;223:113655.
  • Mattarei A, Biasutto L, Romio M, Zoratti M, Paradisi C. Synthesis of resveratrol sulfates: turning a nightmare into a dream. Tetrahedron. 2015; 71 (20):3100–3106.
  • Zhang Z, Yu B, Schmidt RR. Synthesis of mono- and di-o-β-d-glucopyra©ide conjugates of (e)-resveratrol. Synthesis. 2006;2006(8):1301–1306.
  • Ensch C, Hesse M. Total syntheses of the spermine alkaloids (−)-(r,r)-hopromine and (±)-homaline. HCA. 2002;85 (6):1659–1677.
  • Peñalver P, Belmonte-Reche E, Adán N, Caro M, Mateos-Martín ML, Delgado M, González-Rey E, Morales JC. Alkylated resveratrol prodrugs and metabolites as potential therapeutics for neurodegenerative diseases. Eur J Med Chem. 2018;146:123–138.
  • Mungall WS, Greene GL, Heavner GA, Letsinger RL. Use of azido group in the synthesis of 5’ terminal aminodeoxythymidine oligonucleotides. J Org Chem. 1975; 40 (11):1569–1562.
  • Butler MS, Paterson DL. Antibiotics in the clinical pipeline in October 2019. J Antibiot (Tokyo)). 2020;73(6):329–364.
  • Falagas ME, Rafailidis PI, Matthaiou DK. Resistance to polymyxins: mechanisms, frequency and treatment options. Drug Resist Updat. 2010;13(4-5):132–138.
  • Tan J, Zhao Y, Hedrick JL, Yang YY. Effects of hydrophobicity on antimicrobial activity, selectivity, and functional mechanism of guanidinium-functionalized polymers. Adv Healthcare Materials. 2022;11(7):2100482.
  • Phuong PT, Oliver S, He J, Wong EHH, Mathers RT, Boyer C. Effect of hydrophobic groups on antimicrobial and hemolytic activity: developing a predictive tool for ternary antimicrobial polymers. Biomacromolecules. 2020;21(12):5241–5255.
  • Molinspiration Cheminformatics. 2022. [Accessed 2022 Jun 21]. https://www.molinspiration.com/
  • Raheem N, Straus SK. Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Front Microbiol. 2019;10:2866.
  • Gogry FA, Siddiqui MT, Sultan I, Haq Q, Mohd R. Current update on intrinsic and acquired colistin resistance mechanisms in bacteria. Front Med. 2021;8:677720.
  • Li Q, Cebrián R, Montalbán-López M, Ren H, Wu W, Kuipers OP. Outer-membrane-acting peptides and lipid ii-targeting antibiotics cooperatively kill Gram-negative pathogens. Commun Biol. 2021;4(1):31.
  • Xia Y, Cebrián R, Xu C, Jong A. d, Wu W, Kuipers OP. Elucidating the mechanism by which synthetic helper peptides sensitize pseudomonas aeruginosa to multiple antibiotics. PLoS Pathog. 2021;17(9):e1009909.
  • Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev. 1992;56(3):395–411.
  • Liu Y, Ding S, Shen J, Zhu K. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat Prod Rep. 2019;36(4):573–592.
  • Song M, Liu Y, Huang X, Ding S, Wang Y, Shen J, Zhu K. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant gram-negative pathogens. Nat Microbiol. 2020;5(8):1040–1050.
  • Foged C, Nielsen HM. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv. 2008;5(1):105–117.
  • Bouarab-Chibane L, Forquet V, Lantéri P, Clément Y, Léonard-Akkari L, Oulahal N, Degraeve P, Bordes C. Antibacterial properties of polyphenols: characterization and qsar (quantitative structure–activity relationship) models. Front Microbiol. 2019;10:829.
  • Te Winkel JD, Gray DA, Seistrup KH, Hamoen LW, Strahl H. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front Cell Dev Biol. 2016;4:29.
  • Yamamura H, Hagiwara T, Hayashi Y, Osawa K, Kato H, Katsu T, Masuda K, Sumino A, Yamashita H, Jinno R, et al. Antibacterial activity of membrane-permeabilizing bactericidal cyclodextrin derivatives. ACS Omega. 2021;6(47):31831–31842.
  • Vaara M. New polymyxin derivatives that display improved efficacy in animal infection models as compared to polymyxin B and colistin. Med Res Rev. 2018;38(5):1661–1673.
  • Kanafani ZA, Corey GR. Daptomycin: a rapidly bactericidal lipopeptide for the treatment of gram-positive infections. Expert Rev anti Infect Ther. 2007;5(2):177–184.
  • Egan AJF. Bacterial outer membrane constriction. Mol Microbiol. 2018;107(6):676–687.
  • Wexler HM. Outer-membrane pore-forming proteins in Gram-negative anaerobic bacteria. Clin Infect Dis. 2002;35(Suppl 1):S65–S71.
  • Cebrián R, Xu C, Xia Y, Wu W, Kuipers OP. The cathelicidin-derived close-to-nature peptide d-11 sensitises klebsiella pneumoniae to a range of antibiotics in vitro, ex vivo and in vivo. Int J Antimicrob Agents. 2021;58(5):106434.
  • Corbett D, Wise A, Langley T, Skinner K, Trimby E, Birchall S, Dorali A, Sandiford S, Williams J, Warn P, et al. Potentiation of antibiotic activity by a novel cationic peptide: potency and spectrum of activity of SPR741. Antimicrob Agents Chemother. 2017;61(8):e00200–17.
  • Zurawski DV, Reinhart AA, Alamneh YA, Pucci MJ, Si Y, Abu-Taleb R, Shearer JP, Demons ST, Tyner SD, Lister T. SPR741, an antibiotic adjuvant, potentiates the in vitro and in vivo activity of rifampin against clinically relevant extensively drug-resistant acinetobacter baumannii. Antimicrob Agents Chemother. 2017;61(12):e01239–17.
  • She P, Liu Y, Xu L, Li Y, Li Z, Liu S, Hussain Z, Wu Y. SPR741, double- or triple-combined with erythromycin and clarithromycin, combats drug-resistant klebsiella pneumoniae, its biofilms, and persister cells. Front Cell Infect Microbiol. 2022;12:858606.
  • Lenhard JR, Nation RL, Tsuji BT. Synergistic combinations of polymyxins. Int J Antimicrob Agents. 2016;48(6):607–613.
  • MacNair CR, Brown ED. Outer membrane disruption overcomes intrinsic, acquired, and spontaneous antibiotic resistance. mBio. 2020;11 (5):e01615–20.
  • Stokes JM, MacNair CR, Ilyas B, French S, Côté J-P, Bouwman C, Farha MA, Sieron AO, Whitfield C, Coombes BK, et al. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nat Microbiol. 2017;2:17028.
  • Kuroda K, Caputo GA, DeGrado WF. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chemistry. 2009;15(5):1123–1133.
  • Hollmann A, Martínez M, Noguera ME, Augusto MT, Disalvo A, Santos NC, Semorile L, Maffía PC. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide–membrane interactions of three related antimicrobial peptides. Colloids Surf B Biointerfaces. 2016;141:528–536.
  • Jiang Y, Chen Y, Song Z, Tan Z, Cheng J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv Drug Deliv Rev. 2021;170:261–280.
  • Sahm DF, Kissinger J, Gilmore MS, Murray PR, Mulder R, Solliday J, Clarke B. In vitro susceptibility studies of vancomycin-resistant enterococcus faecalis. Antimicrob Agents Chemother. 1989;33(9):1588–1591.
  • Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: M07-A10 . Approved Standard, 10. ed. Wayne(PA): Documents/Clinical and Laboratory Standards Institute; Committee for Clinical Laboratory Standards; 2015.
  • Cebrián R, Belmonte-Reche E, Pirota V, de Jong A, Morales JC, Freccero M, Doria F, Kuipers OP. G-Quadruplex DNA as a target in pathogenic bacteria: efficacy of an extended naphthalene diimide ligand and its mode of action. J Med Chem. 2022;65(6):4752–4766.
  • Cebrián R, Rodríguez-Cabezas ME, Martín-Escolano R, Rubiño S, Garrido-Barros M, Montalbán-López M, Rosales MJ, Sánchez-Moreno M, Valdivia E, Martínez-Bueno M, et al. Preclinical studies of toxicity and safety of the AS-48 bacteriocin. J Adv Res. 2019;20:129–139.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55–63.