2,494
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

An overview: metal-based inhibitors of urease

, & ORCID Icon
Pages 361-375 | Received 05 Sep 2022, Accepted 16 Nov 2022, Published online: 29 Nov 2022

References

  • Krajewska B. Ureases I. Functional, catalytic and kinetic properties: a review. J Mol Catal B Enzym. 2009;59(1-3):9–21.
  • Modolo LV, de Souza AX, Horta LP, Araujo DP, de Fatima A. An overview on the potential of natural products as ureases inhibitors: a review. J Adv Res. 2015;6(1):35–44.
  • Dixon NE, Gazzola TC, Blakeley RL, Zermer B. Jack bean urease (EC 3.5. 1.5). Metalloenzyme. Simple biological role for nickel. J Am Chem Soc. 1975;97(14):4131–4133.
  • Karplus PA, Pearson MA, Hausinger RP. 70 years of crystalline urease: what have we learned? Acc Chem Res. 1997;30(8):330–337.
  • Jabri E, Carr MB, Hausinger RP, Karplus PA. The crystal structure of urease from Klebsiella aerogenes. Science. 1995;268(5213):998–1004.
  • Balasubramanian A, Ponnuraj K. Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. J Mol Biol. 2010;400(3):274–283.
  • Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure. 1999;7(2):205–216.
  • Ha N-C, Oh S-T, Sung JY, Cha KA, Lee MH, Oh B-H. Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat Struct Biol. 2001;8(6):505–509.
  • Maroney MJ, Ciurli S. Nonredox nickel enzymes. Chem Rev. 2014;114(8):4206–4228.
  • Pinkse MWH, Maier CS, Kim JI, Oh BH, Heck AJR. Macromolecular assembly of H. pylori urease investigated by mass spectrometry. J Mass Spectrom. 2003;38(3):315–320.
  • Rotini O. La trasformazione enzimatica dell’urea nel terreno. Ann Labor Ric Ferm Spallanrani. 1935;3:143–154.
  • Mobley H, Island MD, Hausinger RP. Molecular biology of microbial ureases. Microbiol Rev. 1995;59(3):451–480.
  • Zonia LE, Stebbins NE, Polacco JC. Essential role of urease in germination of nitrogen-limited Arabidopsis thaliana seeds. Plant Physiol. 1995;107(4):1097–1103.
  • D'Orazio SEF, Collins CM. Characterization of a plasmid-encoded urease gene cluster found in members of the family Enterobacteriaceae. J Bacteriol. 1993;175(6):1860–1864.
  • Montecucco C, Rappuoli R. Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol. 2001;2(6):457–466.
  • Zhengping W, Cleemput OV, Demeyer P, Baert L. Effect of urease inhibitors on urea hydrolysis and ammonia volatilization. Biol Fertil Soils. 1991;11(1):43–47.
  • Amtul Z, Kausar N, Follmer C, Rozmahel RF, Rahman AU, Kazmi SA, Shekhani MS, Eriksen JL, Khan KM, Choudhary MI. Cysteine based novel noncompetitive inhibitors of urease(s) - distinctive inhibition susceptibility of microbial and plant ureases. Bioorg Med Chem. 2006;14(19):6737–6744.
  • Seneviratne G, Holm LHJV, Ekanayake E. Agronomic benefits of rhizobial inoculant use over nitrogen fertilizer application in tropical soybean. Field Crops Res. 2000;68(3):199–203.
  • Boer JL, Mulrooney SB, Hausinger RP. Nickel-dependent metalloenzymes. Arch Biochem Biophys. 2014;544:142–152.
  • Zaman M, Blennerhassett JD. Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system. Agric Ecosyst Environ. 2010;136(3-4):236–246.
  • Krajewska B, van Eldik R, Brindell M. Temperature-and pressure-dependent stopped-flow kinetic studies of jack bean urease. Implications for the catalytic mechanism. J Biol Inorg Chem. 2012;17(7):1123–1134.
  • You Z-L, Shi D-H, Zhang J-C, Ma Y-P, Wang C, Li K. Synthesis, structures, and urease inhibitory activities of oxovanadium (v) complexes with Schiff bases. Inorg Chim Acta. 2012;384:54–61.
  • Sanz-Cobena A, Sánchez-Martín L, García-Torres L, Vallejo A. Gaseous emissions of N2O and NO and NO3-leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop. Agric Ecosyst Environ. 2012;149:64–73.
  • Ara R, Ashiq U, Mahroof-Tahir M, Maqsood ZT, Khan KM, Lodhi MA, Choudhary MI. Chemistry, urease inhibition, and phytotoxic studies of binuclear vanadium (IV) complexes. Chem Biodivers. 2007;4(1):58–71.
  • Basak T, Drew MG, Chattopadhyay S. A trinuclear centrosymmetric zinc (II) Schiff base complex: exploration of its photocatalytic and phosphatase mimicking activity. Inorg Chem Commun. 2018;98:92–98.
  • Shiva Shankar D, Rambabu A, Vamsikrishna N, Ganji N, Daravath S. Three mononuclear Cu (II) complexes based on p-tolylmethanamine Schiff bases: in-vitro cytotoxicity, DNA binding ability, nuclease activity and antibacterial studies. Inorg Chem Commun. 2018;98:48–57.
  • Scavenging DR. Synthesis of benzophenone hydrazone analogs and their DPPH radical scavenging and urease inhibitory activities. J ChemRESEARCH PAPER Soc Pak. 2015;37:479.
  • Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK. Active sites of transition-metal enzymes with a focus on nickel. Curr Opin Struct Biol. 1998;8(6):749–758.
  • Qin QP, Meng T, Tan MX, Liu YC, Luo XJ, Zou BQ, Liang H. Synthesis, crystal structure and biological evaluation of a new dasatinib copper(II) complex as telomerase inhibitor. Eur J Med Chem. 2018;143:1597–1603.
  • Oliveri V, Lanza V, Milardi D, Viale M, Maric I, Sgarlata C, Vecchio G. Amino-and chloro-8-hydroxyquinolines and their copper complexes as proteasome inhibitors and antiproliferative agents. Metallomics. 2017;9(10):1439–1446.
  • Hameed A, Al-Rashida M, Uroos M, Abid Ali S, Khan KM. Schiff bases in medicinal chemistry: a patent review (2010-2015). Expert Opin Ther Pat. 2017;27(1):63–79.
  • Abdel-Rahman LH, Abu-Dief AM, El-Khatib RM, Abdel-Fatah SM. Some new nano-sized Fe(II), Cd(II) and Zn(II) Schiff base complexes as precursor for metal oxides: sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorg Chem. 2016;69:140–152.
  • Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in copper complexes as anticancer agents. Chem Rev. 2014;114(1):815–862.
  • You Z-L, Zhou P. Synthesis, characterization and crystal structures of a pair of azido-bridged polynuclear Schiff base copper(II) complexes with urease inhibitory activity. Transit Met Chem. 2008;33(4):453–457.
  • Wang C-Y, Ye J-Y, Lv C-Y, Lan W-Z, Zhou J-B. Syntheses and crystal structures of two Schiff-base copper (II) complexes with urease inhibition. J Coord Chem. 2009;62(13):2164–2171.
  • Chen W, Li Y, Cui Y, Zhang X, Zhu HL, Zeng Q. Synthesis, molecular docking and biological evaluation of Schiff base transition metal complexes as potential urease inhibitors. Eur J Med Chem. 2010;45(10):4473–4478.
  • You Z-L, Zhang L, Shi D-H, Wang X-L, Li X-F, Ma Y-P. Synthesis, crystal structures and urease inhibitory activity of copper(II) complexes with Schiff bases. Inorg Chem Commun. 2010;13(8):996–998.
  • Cui YM, Li Y, Cai YJ, Chen W, Zhu HL. Synthesis, molecular docking, and activity of Schiff-base copper(II) complex with n-n-butylsalicylaldiminate as Helicobacter pylori urease inhibitor. J Coord Chem. 2011;64(4):610–616.
  • Wang CY, Ye JY. Synthesis, crystal structures, and urease inhibitory activity of cooper(II) complexes with Schiff bases. Russ J Inorg Chem. 2011;37:235–241.
  • Dong X, Li Y, Li Z, Cui Y, Zhu H. Synthesis, structures and urease inhibition studies of copper(II) and nickel(II) complexes with bidentate N,O-donor Schiff base ligands. J Inorg Biochem. 2012;108:22–29.
  • Li X, Yang X, Li Y, Gou Y, Wang Q. Synthesis, structure and urease inhibition studies of dimeric copper(II) complexes with a tridentate Schiff base ligand derived from tetrahydrofurfurylamine. Inorg Chim Acta. 2013;408:46–52.
  • Cui YM, Dong XW, Chen W, Wang WJ, Li YG, Zhu HL. Synthesis, inhibitory activity and molecular docking studies of two Cu(II) complexes against Helicobacter pylori urease. J Enzyme Inhib Med Chem. 2012;27(4):528–532.
  • Cui Y, Qiao L, Li Y, Jing H, Li Y, Wang Q. Synthesis, solid-state structures, and urease inhibition activities of new copper(II) complexes based on O,N,O-tridentate Schiff bases. J Coord Chem. 2016;69(15):2318–2328.
  • Chen X, Wang C, Fu J, Huang Z, Xu Y, Wang S. Synthesis, inhibitory activity and inhibitory mechanism studies of Schiff base Cu(II) complex as the fourth type urease inhibitors. Inorg Chem Commun. 2019;99:70–76.
  • del Campo R, Criado JJ, García E, Hermosa MR, Jiménez-Sánchez A, Manzano JL, Monte E, Rodríguez-Fernández E, Sanz F. Thiourea derivatives and their nickel (II) and platinum (II) complexes: antifungal activity. J Inorg Biochem. 2002;89(1-2):74–82.
  • Cui YM, Yan WX, Cai YJ, Chen W, Zhu HL. Synthesis, molecular docking, and inhibitory activity of a Ni Schiff-base complex against urease. J Coord Chem. 2010;63(21):3706–3713.
  • Rauf MK, Yaseen S, Badshah A, Zaib S, Arshad R, Imtiaz Ud D, Tahir MN, Iqbal J. Synthesis, characterization and urease inhibition, in vitro anticancer and antileishmanial studies of Ni(II) complexes with N,N,N’-trisubstituted thioureas. J Biol Inorg Chem. 2015;20(3):541–554.
  • Wang H, Lan TX, Zhang X, Zhang DM, Bi CF, Fan YH. Synthesis, crystal structures, DFT studies, molecular docking and urease inhibition studies of three Ni(II) complexes with a sexidentate N2O4-donor bis-Schiff base ligand. J Inorg Biochem. 2016;165:18–24.
  • Erxleben A. Mono-and dinuclear zinc complexes derived from unsymmetric binucleating ligands: synthesis, characterization, and formation of tetranuclear arrays. Inorg Chem. 2001;40(2):208–213.
  • Chisholm MH, Gallucci JC, Zhen H, Huffman JC. Three-coordinate zinc amide and phenoxide complexes supported by a bulky Schiff base ligand. Inorg Chem. 2001;40(19):5051–5054.
  • Osowole AA, Kolawole GA, Fagade OE. Synthesis, physicochemical, and biological properties of nickel (II), copper (II), and zinc (II) complexes of an unsymmetrical tetradentate Schiff base and their adducts. Synth React Inorg M. 2005;35(10):829–836.
  • Iqbal MS, Bukhari IH, Arif M. Preparation, characterization and biological evaluation of copper (II) and zinc (II) complexes with Schiff bases derived from amoxicillin and cephalexin. Appl Organometal Chem. 2005;19(7):864–869.
  • Chohan ZH, Kausar S. Synthesis, structural and biological studies of nickel (II), copper (II) and zinc (II) chelates with tridentate Schiff bases having NNO and NNS donor systems. Chem Pharm Bull. 1993;41(5):951–953.
  • Chohan ZH, Kausar S. Biologically active complexes of nickel (II), copper (II) and zinc (II) with Schiff-vase ligand derived from the reaction of 2-aminopyridine and pyrrol-2-carboxaldehyde-their synthesis and characterisation. Chem Pharm Bull. 1992;40(9):2555–2556.
  • Shi DH, You ZL. Synthesis, characterization, and crystal structures of two Schiff base zinc(II) complexes with urease inhibitory activities. Russ J Inorg Chem. 2010;36:535–540.
  • Wang CY, Li JF, Zhang ZS, Liu Y, Yi L, Sheng SJ. Synthesis, crystal structures, and urease inhibitory properties of two isostructural dinuclear zinc(II) complexes with Schiff base 5-methoxy-2-(2-methylaminoethylimino)methyl phenol. Synth React Inorg M. 2012;42(10):1405–1409.
  • Cheng K, You Z-L, Zhu H-L. New method for the synthesis of a mononucleating cyclic peptide ligand, crystal structures of its Ni, Zn, Cu, and Co complexes, and their inhibitory bioactivity against urease. Aust J Chem. 2007;60(5):375–379.
  • Abu Shamma A, Abu Ali H, Kamel S. Synthesis, characterization and biological properties of mixed ligand complexes of cobalt (II/III) valproate with 2,9‐dimethyl‐1,10‐phenanthroline and 1,10‐phenanthroline. Appl Organometal Chem. 2018;32(1):e3904.
  • Lv J, Liu T, Cai S, Wang X, Liu L, Wang Y. Synthesis, structure and biological activity of cobalt (II) and copper (II) complexes of valine-derived Schiff bases. J Inorg Biochem. 2006;100(11):1888–1896.
  • Jing C, Wang C, Yan K, Zhao K, Sheng G, Qu D, Niu F, Zhu H, You Z. Synthesis, structures and urease inhibitory activity of cobalt(III) complexes with Schiff bases. Bioorg Med Chem. 2016;24(2):270–276.
  • Barakat A, Soliman SM, Ali M, Elmarghany A, Al-Majid AM, Yousuf S, Ul-Haq Z, Choudhary MI, El-Faham A. Synthesis, crystal structure, evaluation of urease inhibition potential and the docking studies of cobalt(III) complex based on barbituric acid Schiff base ligand. Inorg Chim Acta. 2020;503:119405.
  • Wang H, Zhang X, Zhao Y, Zhang D, Jin F, Fan Y. Three Co(II) complexes with a sexidentate N2O4-donor bis-Schiff base ligand: synthesis, crystal structures, DFT studies, urease inhibition and molecular docking studies. J Mol Struct. 2017;1148:496–504.
  • Willsky G, Goldfine A, Kostyniak P, McNeill J, Yang L, Khan H, Crans D. Effect of vanadium (IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis (maltolato) oxovandium (IV). J Inorg Biochem. 2001;85(1):33–42.
  • Orvig C, Caravan P, Gelmini L, Glover N, Herring FG, Li H, McNeill JH, Rettig SJ, Setyawati IA. Reaction chemistry of bmov, bis (maltolato) oxovanadium (IV), a potent insulin mimetic agent. J Am Chem Soc. 1995;117(51):12759–12770.
  • Messerschmidt A, Prade L, Wever R. Implications for the catalytic mechanism of the vanadium-containing enzyme chloroperoxidase from the fungus Curvularia inaequalis by X-ray structures of the native and peroxide form. Biol Chem. 1997;378(3-4):309–315.
  • Cheng X-S, Zhang J-C, You Z-L, Wang X, Li H-H. Synthesis, structures, and Helicobacter pylori urease inhibition of hydroxamate-coordinated oxovanadium complexes with benzohydrazone ligands. Transition Met Chem. 2014;39(3):291–297.
  • Lansdown AB. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv Pharmacol Sci. 2010;2010:910686.
  • Mazzei L, Cianci M, Vara AG, Ciurli S. The structure of urease inactivated by Ag (I): a new paradigm for enzyme inhibition by heavy metals. Dalton Trans. 2018;47(25):8240–8247.
  • Li X, Wang Y, Li Y, Gou Y, Wang Q. Synthesis, characterization and biological evaluation of two silver(I)trans-cinnamate complexes as urease inhibitors. Z Anorg Allg Chem. 2014;640(2):423–428.
  • Zhu Y, Li X, Li Y, Wang Q, Lu X. Synthesis, structures and urease inhibitory activities of three silver(I) complexes derived from 2,6-dichlorophenylacetic acid. Inorg Chim Acta. 2019;484:42–46.
  • Mazzei L, Cirri D, Cianci M, Messori L, Ciurli S. Kinetic and structural analysis of the inactivation of urease by mixed-ligand phosphine halide Ag (I) complexes. J Inorg Biochem. 2021;218:111375.
  • Shi D-H, You Z-L, Xu C, Zhang Q, Zhu H-L. Synthesis, crystal structure and urease inhibitory activities of Schiff base metal complexes. Inorg Chem Commun. 2007;10(4):404–406.
  • Jamil M, Sultana N, Sarfraz M, Tahir MN, Tariq MI. Diamines derived transition metal complexes of naproxen: synthesis, characterization and urease inhibition studies. Iran J Chem Chem Eng. 2020;39:45–57.
  • Shi D-H, Zhang L, Ni L-L, Bai S, You Z-L. Synthesis, crystal structures, and urease inhibitory activities of two isostructural Schiff base cadmium(II) complexes. Synth React Inorg M. 2010;40(5):359–363.
  • You Z-L, Han X, Zhang G-N. Synthesis, crystal structures, and urease inhibitory activities of three novel thiocyanato-bridged polynuclear Schiff base cadmium(II) complexes. Z Anorg Allg Chem. 2008;634(1):142–146.
  • Xu YP, Chen YH, Chen ZJ, Qin J, Qian SS, Zhu HL. Synthesis, crystal structures, molecular docking, and urease inhibitory activities of transition‐metal complexes with a 1,2,4‐triazolecarboxylic acid derived ligand. Eur J Inorg Chem. 2015;2015(12):2076–2084.
  • Shi D-H, Zhang N, Liu W-W, Gao L-L, Zhang Q, You Z-L. Synthesis, crystal structures, and biological activity of Cu(II), Mn(III), and Fe(III) complexes derived from N,N’-bis(4-methoxysalicylidene)ethylenediamine. Synth React Inorg M. 2012;42(8):1177–1182.
  • Mazzei L, Wenzel MN, Cianci M, Palombo M, Casini A, Ciurli S. Inhibition mechanism of urease by Au (III) compounds unveiled by X-ray diffraction analysis. ACS Med Chem Lett. 2019;10(4):564–570.
  • Mazzei L, Massai L, Cianci M, Messori L, Ciurli S. Medicinal Au (I) compounds targeting urease as prospective antimicrobial agents: unveiling the structural basis for enzyme inhibition. Dalton Trans. 2021;50(40):14444–14452.
  • Yang W, Feng Q, Peng Z, Wang G. An overview on the synthetic urease inhibitors with structure-activity relationship and molecular docking. Eur J Med Chem. 2022;234:114273.