2,547
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Recent progress in chemistry and bioactivity of monoterpenoid indole alkaloids from the genus gelsemium: a comprehensive review

, , ORCID Icon, , , & show all
Article: 2155639 | Received 04 Oct 2022, Accepted 02 Dec 2022, Published online: 11 Jan 2023

References

  • Dutt V, Thakur S, Dhar VJ, Sharma A. The genus Gelsemium: an update. Pharmacogn Rev. 2010;4(8):185–194.
  • Yamada Y, Kitajima M, Kogure N, Wongseripipatana S, Takayama H. Seven new monoterpenoid indole alkaloids from Gelsemium elegans. Chem Asian J. 2011;6(1):166–173.
  • Zhang Z, Zhang Y, Wang Y, Zhang Q, Yan X, Di Y, He H, Hao X. Three novel β-carboline alkaloids from Gelsemium elegans. Fitoterapia. 2012;83(4):704–708.
  • Lovell FM, Pepinsky R, Wilson AJC. X-ray analysis of the structure of gelsemine hydrohalides. Tetrahedron Lett. 1959;1(4):1–5.
  • Liu M, Huang HH, Yang J, Su YP, Lin HW, Lin LQ, Liao WJ, Yu CX. The active alkaloids of Gelsemium elegans Benth. are potent anxiolytics. Psychopharmacology. 2013;225(4):839–851.
  • Xu Y, Qiu HQ, Liu H, Liu M, Huang ZY, Yang J, Su YP, Yu CX. Effects of koumine, an alkaloid of Gelsemium elegans Benth., on inflammatory and neuropathic pain models and possible mechanism with allopregnanolone. Pharmacol Biochem Behav. 2012;101(3):504–514.
  • Xu YK, Liao SG, Na Z, Hu HB, Li Y, Luo HR. Gelsemium alkaloids, immunosuppressive agents from Gelsemium elegans. Fitoterapia. 2012;83(6):1120–1124.
  • Liu M, Shen J, Liu H, Xu Y, Su YP, Yang J, Yu CX. Gelsenicine from Gelsemium elegans attenuates neuropathic and inflammatory pain in mice. Biol Pharm Bull. 2011;34(12):1877–1880.
  • Ishikura M, Abe T, Choshi T, Hibino S. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat Prod Rep. 2013;30(5):694–752.
  • Lin H, Qiu H, Cheng Y, Liu M, Chen M, Que Y, Que W. Gelsemium elegans Benth: chemical components, pharmacological effects, and toxicity mechanisms. Molecules. 2021;26(23):7145.
  • Zhou X, Xiao T, Iwama Y, Qin Y. Biomimetic total synthesis of (+)-gelsemine. Angew Chem Int Ed Engl. 2012;51(20):4909–4912.
  • Zhou S, Xiao T, Song H, Zhou X. Studies toward the total synthesis of (+)-gelsemine and synthesis of spirocyclopentaneoxindole through intramolecular Michael cyclization. Tetrahedron Lett. 2012;53(42):5684–5687.
  • Shimokawa J, Harada T, Yokoshima S, Fukuyama T. Total synthesis of gelsemoxonine. Pure Appl Chem. 2012;84(7):1643–1650.
  • Jin G, Su Y, Liu M, Xu Y, Yang J, Liao K, Yu C. Medicinal plants of the genus Gelsemium (Gelsemiaceae, Gentianales)-A review of their phytochemistry, pharmacology, toxicology and traditional use. J Ethnopharmacol. 2014;152(1):33–52.
  • Ghosh A, Carter RG. Recent syntheses and strategies toward polycyclic gelsemium alkaloids. Angew Chem Int Ed Engl. 2019;58(3):681–694.
  • Zhang W, Zhang S, Yin Z, Wang L, Ye W. Monoterpenoid indole alkaloids from Gelsemium Elegans. Heterocycles. 2014;89(5):1245–1253.
  • Wang L, Wang JF, Mao X, Jiao L, Wang XJ. Gelsedine-type oxindole alkaloids from Gelsemium elegans and the evaluation of their cytotoxic activity. Fitoterapia. 2017; 120:131–135.
  • Jin P, Zhan G, Zheng G, Liu J, Peng X, Huang L, Gao B, Yuan X, Yao G. Gelstriamine A, a triamino monoterpene indole alkaloid with a caged 6/5/7/6/6/5 scaffold and analgesic alkaloids from Gelsemium elegans stems. J Nat Prod. 2021;84(4):1326–1334.
  • Xue Q, Hu J, Liu X, Gu J. Cytotoxic gelsedine-type indole alkaloids from Gelsemium elegans. J Asian Nat Prod Res. 2020;22(12):1138–1144.
  • Sun MX, Cui Y, Li Y, Meng WQ, Xu QQ, Zhao J, Lu JC, Xiao K. Indole alkaloids from Gelsemium elegans. Phytochemistry. 2019; 162:232–240.
  • Zhang W, Xu W, Wang G, Gong X, Li N, Wang L, Ye W. Gelsekoumidines A and B: two pairs of atropisomeric bisindole alkaloids from the roots of Gelsemium elegans. Org Lett. 2017;19(19):5194–5197.
  • Wei X, Huang XT, Zhang LY, Hu XY, Zhang W, Zhou YQ, Yu HF, Ding CF, Zhang LC, Liu X, et al. New oxindole alkaloids with selective osteoclast inhibitory activity from Gelsemium elegans. Nat Prod Res. 2021;36(10):2630–2636.
  • Wang HT, Yang YC, Mao X, Wang Y, Huang R. Cytotoxic gelsedine-type indole alkaloids from Gelsemium elegans. J Asian Nat Prod Res. 2018;20(4):321–327.
  • Sun M, Gao H, Zhao J, Zhang L, Xiao K. New oxindole alkaloids from Gelsemium elegans. Tetrahedron Lett. 2015;56(45):6194–6197.
  • Li NP, Liu M, Huang XJ, Gong XY, Zhang W, Cheng MJ, Ye WC, Wang L. Gelsecorydines A-E, five gelsedine-corynanthe-type bisindole alkaloids from the fruits of Gelsemium elegans. J Org Chem. 2018;83(10):5707–5714.
  • Gu J, Zhang W, Cai W, Fu X, Zhou H, Li N, Tian H, Liu J, Ye W, Wang L. Gelserancines A-E, monoterpenoid indole alkaloids with unusual skeletons from Gelsemium elegans. Org Chem Front. 2021;8(9):1918–1925.
  • Qu J, Fang L, Ren XD, Liu Y, Yu SS, Li L, Bao XQ, Zhang D, Li Y, Ma SG. Bisindole alkaloids with neural anti-inflammatory activity from Gelsemium elegans. J Nat Prod. 2013;76(12):2203–2209.
  • Wei X, Yang J, Ma H, Ding C, Yu H, Zhao Y, Liu Y, Khan A, Wang Y, Yang Z, et al. Antimicrobial indole alkaloids with adductive C-9 aromatic unit from Gelsemium elegans. Tetrahedron Lett. 2018;59(21):2066–2070.
  • Wei X, Guo R, Wang X, Liang JJ, Yu HF, Ding CF, Feng TT, Zhang LY, Liu X, Hu XY, et al. New monoterpenoid indoles with osteoclast activities from Gelsemium elegans. Molecules. 2021;26(24):7457.
  • Zhang W, Huang XJ, Zhang SY, Zhang DM, Jiang RW, Hu JY, Zhang XQ, Wang L, Ye WC. Geleganidines A-C, unusual monoterpenoid indole alkaloids from Gelsemium elegans. J Nat Prod. 2015;78(8):2036–2044.
  • Xu YK, Yang L, Liao SG, Cao P, Wu B, Hu HB, Guo J, Zhang P. Koumine, humantenine, and yohimbane alkaloids from Gelsemium elegans. J Nat Prod. 2015;78(7):1511–1517.
  • Zhang W, Zhang S, Wang G, Li N, Chen M, Gu J, Zhang D, Wang L, Ye W. Five new koumine-type alkaloids from the roots of Gelsemium elegans. Fitoterapia. 2017; 118:112–117.
  • Sun M, Hou X, Gao H, Guo J, Xiao K. Two new koumine-type indole alkaloids from Gelsemium elegans Benth. Molecules. 2013;18(2):1819–1825.
  • Li NP, Liu JS, Liu JW, Tian HY, Zhou HL, Zheng YR, Huang XJ, Cao JQ, Ye WC, Wang L. Monoterpenoid indole alkaloids from the fruits of Gelsemium elegans and their anti-inflammatory activities. Bioorg Chem. 2021; 107:104624.
  • Liu L, Cao JX, Yao YC, Xu SP. Progress of pharmacological studies on alkaloids from Apocynaceae. J Asian Nat Prod Res. 2013;15(2):166–184.
  • Pan L, Terrazas C, Muñoz Acuña U, Ninh TN, Chai H, Carcache de Blanco EJ, Soejarto DD, Satoskar AR, Kinghorn AD. Bioactive indole alkaloids isolated from Alstonia angustifolia. Phytochem Lett. 2014; 10:54–59.
  • Xiong B, Jin G, Xu Y, You W, Luo Y, Fang M, Chen B, Huang H, Yang J, Lin X, et al. Identification of koumine as a translocator protein 18 kda positive allosteric modulator for the treatment of inflammatory and neuropathic pain. Front Pharmacol. 2021; 12:692917.
  • Xiong B, You W, Luo Y, Wu JG, Xu M, Yang Y, Huang J, Yu H. C. Investigation of the possible allostery of koumine extracted from Gelsemium elegans benth. and analgesic mechanism associated with neurosteroids. Front Pharmacol. 2021;12:739618.
  • Qiu HQ, Xu Y, Jin GL, Yang J, Liu M, Li SP, Yu CX. Koumine enhances spinal cord 3α-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain. Mol Pain. 2015;11:46.
  • Xiong BJ, Xu Y, Jin GL, Liu M, Yang J, Yu CX. Analgesic effects and pharmacologic mechanisms of the Gelsemium alkaloid koumine on a rat model of postoperative pain. Sci Rep. 2017;7(1):14269.
  • Jin GL, He SD, Lin SM, Hong LM, Chen WQ, Xu Y, Yang J, Li SP, Yu CX. Koumine attenuates neuroglia activation and inflammatory response to neuropathic pain. Neural Plast. 2018;2018:9347696.
  • Jin G, Yue R, He S, Hong L, Xu Y, Yu C. Koumine decreases astrocyte-mediated neuroinflammation and enhances autophagy, contributing to neuropathic pain from chronic constriction injury in rats. Front Pharmacol. 2018;9:989.
  • Ling Q, Liu M, Wu MX, Xu Y, Yang J, Huang HH, Yu CX. Anti-allodynic and neuroprotective effects of koumine, a Benth alkaloid, in a rat model of diabetic neuropathy. Biol Pharm Bull. 2014;37(5):858–864.
  • Jin G, Hong L, Liu H, Yue R, Shen Z, Yang J, Xu Y, Huang H, Li Y, Xiong B, et al. Koumine modulates spinal microglial M1 polarization and the inflammatory response through the Notch-RBP-J kappa signaling pathway, ameliorating diabetic neuropathic pain in rats. Phytomedicine. 2021;90:153640.
  • Ye LX, Huang HH, Zhang SH, Lu JS, Cao DX, Wu DD, Chi PW, Hong LH, Wu MX, Xu Y, et al. Streptozotocin-induced hyperglycemia affects the pharmacokinetics of koumine and its anti-allodynic action in a rat model of diabetic neuropathic pain. Front Pharmacol. 2021;12:640318.
  • Zhang J, Gong N, Huang J, Guo L, Wang Y. Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal alpha 3 glycine receptors. Pain. 2013;154(11):2452–2462.
  • Lara CO, Murath P, Muñoz B, Marileo AM, Martín LS, San Martín VP, Burgos CF, Mariqueo TA, Aguayo LG, Fuentealba J, et al. Functional modulation of glycine receptors by the alkaloid gelsemine. Br J Pharmacol. 2016;173(14):2263–2277.
  • Shoaib RM, Zhang J, Mao X, Wang Y. Gelsemine and koumine, principal active ingredients of Gelsemium, exhibit mechanical antiallodynia via spinal glycine receptor activation-induced allopregnanolone biosynthesis. Biochem Pharmacol. 2019;161:136–148.
  • Wu YE, Li YD, Luo YJ, Wang TX, Wang HJ, Chen SN, Qu WM, Huang ZL. Gelsemine alleviates both neuropathic pain and sleep disturbance in partial sciatic nerve ligation mice. Acta Pharmacol Sin. 2015;36(11):1308–1317.
  • Li G, Zhong Y, Wang W, Jia X, Zhu H, Jiang W, Song Y, Xu W, Wu S. Sempervirine mediates autophagy and apoptosis via the Akt/mTOR signaling pathways in glioma cells. Front Pharmacol. 2021;12:770667.
  • Yue R, Liu H, Huang Y, Wang J, Shi D, Su Y, Luo Y, Cai P, Jin G, Yu C. Sempervirine inhibits proliferation and promotes apoptosis by regulating Wnt/β-Catenin pathway in human hepatocellular carcinoma. Front Pharmacol. 2021;12:806091.
  • Caggiano C, Guida E, Todaro F, Bielli P, Mori M, Ghirga F, Quaglio D, Botta B, Moretti F, Grimaldi P, et al. Sempervirine inhibits RNA polymerase I transcription independently from p53 in tumor cells. Cell Death Discov. 2020;6(1):111.
  • Wang L, Xu H, Liang J, Ding Y, Meng F. An integrated network, RNA sequencing, and experiment pharmacology approach reveals the active component, potential target, and mechanism of Gelsemium elegans in the treatment of colorectal cancer. Front Oncol. 2020; 10:616628.
  • Chen C, Zhong Z, Xin Z, Hong L, Su Y, Yu C. Koumine exhibits anxiolytic properties without inducing adverse neurological effects on functional observation battery, open-field and Vogel conflict tests in rodents. J Nat Med. 2017;71(2):397–408.
  • Xiong B, Zhong Z, Chen C, Huang H, Lin J, Xu Y, Yang J, Yu C. The anxiolytic effect of koumine on a predatory sound stress-induced anxiety model and its associated molecular mechanisms. Phytomedicine. 2022;103:154225.
  • Meyer L, Boujedaini N, Patte-Mensah C, Mensah-Nyagan AG. Pharmacological effect of gelsemine on anxiety-like behavior in rat. Behav Brain Res. 2013;253:90–94.
  • Yu H, Tang M, Zeng Z, Huang S, Zheng X, Liu Z. Suppressive effects of gelsemine on anxiety-like behaviors induced by chronic unpredictable mild stress in mice. Brain Sci. 2022;12(2):191.
  • Luo Y, Xiong B, Liu H, Chen Z, Huang H, Yu C, Yang J. Koumine suppresses IL-1 beta secretion and attenuates inflammation associated with blocking ROS/NF-kappa B/NLRP3 axis in macrophages. Front Pharmacol. 2021;11:622074.
  • Feng M, Kong D, Guo H, Xing C, Lv J, Bian H, Lv N, Zhang C, Chen D, Liu M, et al. Gelsevirine improves age-related and surgically induced osteoarthritis in mice by reducing STING availability and local inflammation. Biochem Pharmacol. 2022;198:114975.
  • Yang J, Cai HD, Zeng YL, Chen ZH, Fang MH, Su YP, Huang HH, Xu Y, Yu CX. Effects of koumine on adjuvant- and collagen-induced arthritis in rats. J Nat Prod. 2016;79(10):2635–2643.
  • Jin GL, Yang J, Chen WQ, Wang J, Qiu HQ, Xu Y, Yu CX. The analgesic effect and possible mechanisms by which koumine alters type II collagen-induced arthritis in rats. J Nat Med. 2019;73(1):217–225.
  • Lin Y, Liu Q, Chen Z, Zheng F, Huang H, Yu C, Yang J. The immunomodulatory effect of koumine on B cells under dependent and independent responses by T cells. Eur J Pharmacol. 2022; 914:174690.
  • Li Z, Zhang J, Zhang R, Kuang Y. Extraction of koumine from Gelsemium Elegans Benth. and its therapeutic effect on collagen-induced arthritis in mice. Food Sci Tech. 2022; 42:e10421–e10421.
  • Diethelm S, Carreira EM. Total synthesis of (±)-Gelsemoxonine. J Am Chem Soc. 2013;135(23):8500–8503.
  • Diethelm S, Carreira EM. Total synthesis of gelsemoxonine through a spirocyclopropane isoxazolidine ring contraction. J Am Chem Soc. 2015;137(18):6084–6096.
  • Harada T, Shimokawa J, Fukuyama T. Unified total synthesis of five gelsedine-type alkaloids: (-)-gelsenicine, (-)-gelsedine, (-)-gelsedilam, (-)-14-hydroxygelsenicine, and (-)-14,15-dihydroxygelsenicine. Org Lett. 2016;18(18):4622–4625.
  • Shimokawa J, Harada T, Yokoshima S, Fukuyama T. Total synthesis of gelsemoxonine. J Am Chem Soc. 2011;133(44):17634–17637.
  • Huang YM, Liu Y, Zheng CW, Jin QW, Pan L, Pan RM, Liu J, Zhao G. Total synthesis of gelsedilam by means of a thiol-mediated diastereoselective conjugate addition-aldol reaction. Chemistry. 2016;22(51):18339–18342.
  • Newcomb ET, Knutson PC, Pedersen BA, Ferreira EM. Total synthesis of gelsenicine via a catalyzed cycloisomerization strategy. J Am Chem Soc. 2016;138(1):108–111.
  • Knutson PC, Ji H, Harrington CM, Ke Y, Ferreira EM. Chirality transfer and asymmetric catalysis: two strategies toward the enantioselective formal total synthesis of (+)-gelsenicine. Org Lett. 2022;24(27):4971–4976.
  • Wang P, Gao Y, Ma D. Divergent entry to gelsedine-type alkaloids: total syntheses of (-)-gelsedilam, (-)-gelsenicine, (-)-gelsedine, and (-)-gelsemoxonine. J Am Chem Soc. 2018;140(37):11608–11612.
  • Saito A, Kogure N, Kitajima M, Takayama H. Total synthesis of (-)-14-hydroxygelsenicine and six biogenetically related gelsemium alkaloids. Org Lett. 2019;21(17):7134–7137.
  • Chen X, Duan S, Tao C, Zhai H, Qiu FG. Total synthesis of (+)-gelsemine via an organocatalytic Diels-Alder approach. Nat Commun. 2015; 6:7204.
  • Lam JK, Joseph SB, Vanderwal CD. A Zincke aldehyde approach to gelsemine. Tetrahedron Lett. 2015;56(23):3165–3168.
  • Kitajima M, Watanabe K, Maeda H, Kogure N, Takayama H. Asymmetric total synthesis of sarpagine-related indole alkaloids hydroxygardnerine, hydroxygardnutine, gardnerine, (E)-16-epi-normacusine b, and koumine. Org Lett. 2016;18(8):1912–1915.
  • Kerkovius JK, Kerr MA. Total synthesis of isodihydrokoumine, (19Z)-taberpsychine, and (4R)-isodihydroukoumine N-4-oxide. J Am Chem Soc. 2018;140(27):8415–8419.
  • Loya DR, Maddaluno J, De Paolis M. Study toward an asymmetric and catalytic synthesis of koumine. Heterocycles. 2019;99(2):1388–1397.
  • Rebmann H, Gerlinger CKG, Gaich T. Gram-scale total synthesis of sarpagine alkaloids and non-natural derivatives. Chemistry. 2019;25(11):2704–2707.
  • Yang Z, Tan Q, Jiang Y, Yang J, Su X, Qiao Z, Zhou W, He L, Qiu H, Zhang M. Asymmetric total synthesis of sarpagine and koumine alkaloids. Angew Chem Int Ed Engl. 2021;60(23):13105–13111.
  • Chen W, Ma Y, He W, Wu Y, Huang Y, Zhang Y, Tian H, Wei K, Yang X, Zhang H. Structure units oriented approach towards collective synthesis of sarpagine-ajmaline-koumine type alkaloids. Nat Commun. 2022;13(1):908.
  • Rao TSC, Saha S, Raolji GB, Patro B, Risbood P, Difilippantonio MJ, Tomaszewski JE, Malhotra SV. Microwave assisted Westphal condensation and its application to synthesis of sempervirine and related compounds. Tetrahedron Lett. 2013;54(6):487–490.
  • Pan X, Yang C, Cleveland JL, Bannister TD. Synthesis and cytoxicity of sempervirine and analogues. J Org Chem. 2016;81(5):2194–2200.
  • Jiang T, Wang H, Liu L, Song H, Zhang Y, Wang J, Liu L, Xu T, Fan R, Xu Y, et al. CircIL4R activates the PI3K/AKT signaling pathway via the miR-761/TRIM29/PHLPP1 axis and promotes proliferation and metastasis in colorectal cancer. Mol Cancer. 2021;20(1):167.
  • Chu G, Shan W, Ji X, Wang Y, Niu H. Multi-omics analysis of novel signature for immunotherapy response and tumor microenvironment regulation patterns in urothelial cancer. Front Cell Dev Biol. 2021;9:764125.
  • Zhou X, Zhang B, Zhao X, Lin Y, Zhuang Y, Guo J, Wang S. Chlorogenic acid prevents hyperuricemia nephropathy via regulating TMAO-related gut microbes and inhibiting the PI3K/AKT/mTOR pathway. J Agric Food Chem. 2022;70(33):10182–10193.
  • Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331.
  • Wang L, Sun Q, Zhao N, Wen YQ, Song Y, Meng FH. Ultra-liquid chromatography tandem mass spectrometry (UPLC-MS/MS)-based pharmacokinetics and tissue distribution study of koumine and the detoxification mechanism of Glycyrrhiza uralensis Fisch on Gelsemium elegans Benth. Molecules. 2018;23(7):1693.
  • Qi X, Zuo M, Huang S, Ma X, Wang Z, Liu Z. Metabolic profile and tissue distribution of humantenirine, an oxindole alkaloid from Gelsemium, after oral administration in rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2021; 1181:122901.
  • Zhang S, Hu S, Yang X, Shen J, Zheng X, Huang K, Xiang Z. Development of a liquid chromatography with mass spectrometry method for the determination of gelsemine in rat plasma and tissue: Application to a pharmacokinetic and tissue distribution study. J Sep Sci. 2015;38(6):936–942.