1,471
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Discovery of benzochromene derivatives first example with dual cytotoxic activity against the resistant cancer cell MCF-7/ADR and inhibitory effect of the P-glycoprotein expression levels

, , ORCID Icon, , , , , ORCID Icon, , ORCID Icon & show all
Article: 2155814 | Received 23 Oct 2022, Accepted 02 Dec 2022, Published online: 20 Jan 2023

References

  • Liu YQ, Li LH, Yang L, Li HY. A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins. Chem Pap. 2010;64(4):533–536.
  • Mečiarová M, Poláčková V, Toma Š. The effect of microwave and ultrasonic irradiation on the reactivity of benzaldehydes under Al2O3, Ba (OH)2 and K2CO3 catalysis. Chem Pap. 2002;56(3):208–213.
  • Mečiarová M, Toma Š, Babiak P. Effect of ultrasound on one-pot conversion of alcohols to nitro and azido compounds. Chem Pap. 2004;58(2):104–108.
  • Tabatabaeian K, Mamaghani M, Mahmoodi NO, Khorshidi A. Ultrasonic-assisted ruthenium-catalyzed oxidation of aromatic and heteroaromatic compounds. Catal Commun. 2008;9(3):416–420.
  • Slobbe P, Ruijter E, Orru RV. Recent applications of multicomponent reactions in medicinal chemistry. Med Chem Commun. 2012;3(10):1189–1218.
  • Batran RZ, Dawood DH, El-Seginy SA, et al. Coumarinyl pyranopyrimidines as new neuropeptide S receptor antagonists; design, synthesis, homology and molecular docking. Bioorg Chem. 2017;75:274–290.
  • Kamdar NR, Haveliwala DD, Mistry PT, Patel SK. Synthesis and evaluation of in-vitro antitubercular activity and antimicrobial activity of some novel 4H-chromeno[2,3-d]pyrimidine via 2-amino-4-phenyl-4H-chromene-3-carbonitriles. Med Chem Res. 2011;20(7):854–864.
  • Foroumadi A, Emami S, Sorkhi M, et al. Chromene-based synthetic chalcones as potent antileishmanial agents: synthesis and biological activity. Chem Biol Drug Des. 2010;75(6):590–596.
  • Singh G, Sharma A, Kaur H, Ishar M. Chromanyl-isoxazolidines as antibacterial agents: synthesis, biological evaluation, quantitative structure activity relationship, and molecular docking studies. Chem Biol Drug Des. 2016;87(2):213–223.
  • Rajanarendar E, Reddy MN, Krishna SR, et al. Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolyl pyrimido[4,5-b]quinolines and isoxazolyl chromeno[2,3-d]pyrimidin-4-ones. Eur J Med Chem. 2012;55:273–283.
  • Eberhardt L, Kumar K, Waldmann H. Exploring and exploiting biologically relevant chemical space. Curr Drug Targets. 2011;12(11):1531–1546.
  • Ali TE, Ibrahim MA, Abdel-Kariem SM. Synthesis of biologically active 4-oxo-4 H-chromene derivatives containing sulfur-nitrogen heterocycles. Phosphorus Sulf Silicon. 2009;184(9):2358–2392.
  • Lasemi Z, Azimi R, Azizi Amiri M. Efficient synthesis of 9, 10-dihydropyrano [2,3-h] chromene-2,8-dione derivatives in ionic liquid and the study of their antioxidant activity. Nat Prod Res. 2017;31(1):1–6.
  • Sashidhara KV, Kumar M, Modukuri RK, et al. Discovery and synthesis of novel substituted benzocoumarins as orally active lipid modulating agents. Bioorg Med Chem Lett. 2011;21(22):6709–6713.
  • Gupta S, Maurya P, Upadhyay A, et al. Synthesis and bio-evaluation of indole-chalcone based benzopyrans as promising antiligase and antiproliferative agents. Eur J Med Chem. 2018;143:1981–1996.
  • Kumar MS, Singh J, Manna SK, et al. Diversity oriented synthesis of chromene-xanthene hybrids as anti-breast cancer agents. Bioorg Med Chem Lett. 2018;28(4):778–782.
  • Smith CW, Bailey JM, Billingham ME, et al. The anti-rheumatic potential of a series of 2,4-disubstituted-4H-naphtho[1,2-b]pyran-3-carbonitriles. Bioorg Med Chem Lett. 1995;5(23):2783–2788.
  • Kamdar NR, Haveliwala DD, Mistry PT, Patel SK. Design, synthesis and in vitro evaluation of antitubercular and antimicrobial activity of some novel pyranopyrimidines. Eur J Med Chem. 2010;45(11):5056–5063.
  • Termentzi A, Khouri I, Gaslonde T, et al. Synthesis, biological activity, and evaluation of the mode of action of novel antitubercular benzofurobenzopyrans substituted on A ring. Eur J Med Chem. 2010;45(12):5833–5847.
  • Dgachi Y, Bautista-Aguilera O, Benchekroun M, et al. Synthesis and biological evaluation of benzochromenopyrimidinones as cholinesterase inhibitors and potent antioxidant, non-hepatotoxic agents for Alzheimer’s disease. Molecules. 2016;21(5):634.
  • Ahn J, Lee H, Jang J, Kim S, Ha T. Anti-obesity effects of glabridin-rich supercritical carbon dioxide extract of licorice in high-fat-fed obese mice. Food Chem Toxicol. 2013;51:439–445.
  • Ahmed HE, El-Nassag MA, Hassan AH, et al. Introducing novel potent anticancer agents of 1H-benzo[f]- chromene scaffolds, targeting c-Src kinase enzyme with MDA-MB-231 cell line anti-invasion effect. J Enzyme Inhib Med Chem. 2018;33(1):1074–1088.
  • Fouda AM, Okasha RM, Alblewi FF, et al. A proficient microwave synthesis with structure elucidation and the exploitation of the biological behavior of the newly halogenated 3-amino-1H-benzo[f]chromene molecules, targeting dual inhibition of topoisomerase II and microtubules. Bioorg Chem. 2020;95:103549.
  • Fouda AM, Assiri MA, Mora A, et al. Microwave synthesis of novel halogenated β-enaminonitriles linked 9-bromo-1H-benzo[f]chromene moieties: induces cell cycle arrest and apoptosis in human cancer cells via dual inhibition of topoisomerase I and II. Bioorg Chem. 2019;93:103289.
  • Gorle S, Maddila S, Maddila SN, et al. Synthesis, molecular docking study and in vitro anticancer activity of tetrazole linked benzochromene derivatives. Anticancer Agents Med Chem. 2017;17(3):464–470.
  • Ahagh MH, Dehghan G, Mehdipour M, et al. Synthesis, characterization, anti-proliferative properties and DNA binding of benzochromene derivatives: increased Bax/Bcl-2 ratio and caspase-dependent apoptosis in colorectal cancer cell line. Bioorg Chem. 2019;93:103329.
  • Elgaafary M, Fouda AM, Mohamed HM, et al. Synthesis of β-enaminonitrile-linked 8-methoxy-1H-benzo[f]chromene moieties and analysis of their antitumor mechanisms. Front Chem. 2021;9:759148.
  • Elgaafary M, Lehner J, Fouda AM, et al. Synthesis and evaluation of antitumor activity of 9-methoxy-1H-benzo[f]- chromene derivatives. Bioorg Chem. 2021;116:105402.
  • Rafinejad A, Fallah-Tafti A, Tiwari R, et al. 4-Aryl-4H-naphthopyrans derivatives: one-pot synthesis, evaluation of Src kinase inhibitory and anti-proliferative activities. Daru. 2012;20(1):100– 107.
  • Kheirollahi A, Pordeli M, Safavi M, et al. Cytotoxic and apoptotic effects of synthetic benzochromene derivatives on human cancer cell lines. Naunyn Schmiedebergs Arch Pharmacol. 2014;387(12):1199–1208.
  • El-Agrody AM, Abd El-Mawgoud HK, Fouda AM, Khattab ES. Synthesis, in-vitro cytotoxicity of 4H-benzo[h]chromene derivatives and structure–activity relationships of 4-aryl group and 3-, 7-positions. Chem Pap. 2016;70(9):1279–1292.
  • Afifi TH, Okasha RM, Ahmed HE, et al. Structure-activity relationships and molecular docking studies of chromene and chromene based azo chromophores: a novel series of potent antimicrobial and anticancer agents. EXCLI J. 2017;16:868–902.
  • Halawa AH, Fouda AM, Al-Dies AAM, El-Agrody AM. Synthesis, biological evaluation and molecular docking studies of 4H-benzo[h]chromenes, 7H-benzo[h]- chromeno[2,3-d]pyrimidines as antitumor agents. Lett Drug Des Discov. 2016;13(1):77–88.
  • El-Agrody AM, Fouda AM, Khattab ES. Halogenated 2-amino-4H-benzo [h] chromene derivatives as antitumor agents and the relationship between lipophilicity and antitumor activity. Med Chem Res. 2017;26(4):691–700.
  • Alblewi FF, Okasha RM, Eskandrani AA, et al. Design and synthesis of novel heterocyclic-based 4H-benzo[h]chromene moieties: targeting antitumor caspase 3/7 activities and cell cycle analysis. Molecules. 2019;24(6):1060.
  • Piazzi L, Cavalli A, Belluti F, et al. Extensive SAR and computational studies of 3-{4-[(benzylmethylamino)methyl]phenyl}-6,7-dimethoxy-2-H-2-chromenone (AP2238) derivatives. J Med Chem. 2007;50(17):4250–4254.
  • Teodori E, Braconi L, Bua S, et al. Dual P-glycoprotein and CA XII inhibitors: a new strategy to reverse the P-gp mediated multidrug resistance (MDR) in cancer cells. Molecules. 2020;25(7):1748.
  • Braconi L, Teodori E, Riganti C, et al. New dual P-glycoprotein (P-gp) and human carbonic anhydrase XII (hCA XII) inhibitors as multidrug resistance (MDR) reversers in cancer cells, cancer cells. J Med Chem. 2022;65(21):14655–14672.
  • Wang S, Wang SQ, Teng QX, et al. Structure-based design, synthesis, and biological evaluation of new triazolo[1,5-a]pyrimidine derivatives as highly potent and orally active ABCB1 modulators. J Med Chem. 2020;63(24):15979–15996. − 
  • Hong DJ, Jung SH, Kim J, et al. Synthesis and biological evaluation of novel thienopyrimidine derivatives as diacylglycerol acyltransferase 1 (DGAT-1) inhibitors. J Enzyme Inhib Med Chem. 2020;35(1):227–234.
  • Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab Dispos. 2014;42(4):623–631.
  • El-Agrody AM, Al-Ghamdi AM. Synthesis of certain novel 4H-pyrano[3,2-h]quinoline derivatives. Arkivoc. 2011;2011(11):134–146.
  • Al-Sehemi AG, Irfan A, El-Agrody AM. Synthesis, characterization and DFT study of 4H-benzo[h]chromene derivatives. J Mol Struct . 2012;1018:171–175.
  • El-Agrody AM, Al-Dies AA, Fouda AM. Microwave assisted synthesis of 2-amino-6-methoxy-4H-benzo[h]chromene derivatives. Eur J Chem. 2014;5(1):133–137.
  • El-Wahab AH, Mohamed HM, El-Agrody AM, et al. Synthesis and biological screening of 4-benzyl-2H-phthalazine derivatives. Pharmaceuticals. 2011;4(8):1158–1170.
  • Abd-El-Aziz AS, Shipman PO, Neeland EG, et al. Benzo [f]-and Benzo[h] coumarin-containing poly (methyl methacrylate) s and poly (methyl methacrylate) s with pendant coumarin-containing azo dyes. Macromol Chem Phys. 2008;209(1):84–103.
  • El-Agrody MA, Khattab SAM, Fouda A. Synthesis, structure-activity relationship (SAR) studies on some 4-Aryl-4H-chromenes and relationship between lipophilicity and antitumor activity. Lett Drug Design Discov. 2014;11(10):1167–1176.
  • El-Agrody AM, Khattab ES, Fouda AM, Al-Ghamdi AM. Synthesis and antitumor activities of certain novel 2-amino-9-(4-halostyryl)-4H-pyrano[3,2-h]quinoline derivatives. Med Chem Res. 2012;21(12):4200–4213.
  • Mohamed HM, Abd EL-Wahab AH, El-Agrody AM, et al. Synthesis and characterization of new diiodocoumarin derivatives with promising antimicrobial activities. Beilstein J Org Chem. 2011;7(1):1688–1696.
  • Halawa AH, Elaasser MM, El Kerdawy AM, et al. activities, molecular docking and structure–activity relationship of novel synthesized 4H-chromene, and 5H-chromeno[2,3-d]pyrimidine candidates. Med Chem Res. 2017;26(10):2624–2638.
  • El-Agrody AM, Ali FM, Eid FA, et al. Synthesis and antimicrobial activity of thioxopyrimidines and related derivatives. Phosphorus Sulf Silicon Relat Element. 2006;181(4):839–864.
  • Okasha RM, Albalawi FF, Afifi TH, et al. Structural characterization and antimicrobial activities of 7H-benzo[h]chromeno[2,3-d]- pyrimidine and 14H-benzo[h]chromeno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives. Molecules. 2016;21(11):1450.
  • El Gaafary M, Syrovets T, Mohamed HM, et al. Synthesis, cytotoxic activity, crystal structure, DFT studies and molecular docking of 3-amino-1-(2,5-dichlorophenyl)-8-methoxy-1H-benzo[f]chromene-2-carbonitrile. Crystals. 2021;11(2):184.
  • Mohamed HM, Amr AE, El-Agrody AM, et al. Crystal structure of 3-amino-1-(4-bromophenyl)-9-methoxy-1H-benzo[f]chromene-2-carbonitrile, C21H15BrN2O2. Zeitschrift für Kristallographie-new crystal structures. 2017;232(4):561–563.
  • Allen FH, Kennard O, Watson DG, et al. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans 2. 1987;(12):S1–S19.
  • Spackman PR, Turner MJ, McKinnon JJ, et al. CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr. 2021;54(Pt 3):1006–1011.
  • Furukawa T, Kubota T, Suto A, et al. Clinical usefulness of chemosensitivity testing using the MTT assay. J Surg Oncol. 1991;48(3):188–193.
  • Mi Y, Lou L. ZD6474 reverses multidrug resistance by directly inhibiting the function of P-glycoprotein. Br J Cancer. 2007;97(7):934–940.
  • Waghray D, Zhang Q. Inhibit or evade multidrug resistance P-glycoprotein in cancer treatment: miniperspective. J Med Chem. 2018;61(12):5108–5121.
  • Li YS, Yang X, Zhao DS, et al. Design, synthesis and bioactivity study on 5-phenylfuran derivatives as potent reversal agents against P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cell. Eur J Med Chem. 2021;216:113336.
  • Li S, Zhao Q, Wang B, et al. Quercetin reversed MDR in breast cancer cells through down-regulating P-gp expression and eliminating cancer stem cells mediated by YB‐1 nuclear translocation. Phytother Res. 2018;32(8):1530–1536.
  • Luqmani YA. Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract. 2005;14(1):35–48.
  • Dallavalle S, Dobričić V, Lazzarato L, et al. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat. 2020;50:100682.
  • Schwartz GK, Shah MA. Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol. 2005;23(36):9408–9421.
  • Williams GH, Stoeber K. The cell cycle and cancer. J Pathol. 2012;226(2):352–364.
  • De U, Chun P, Choi WS, Lee BM, Kim ND, Moon HR, Jung JH, Kim HS. A novel anthracene derivative, MHY412, induces apoptosis in doxorubicin-resistant MCF-7/Adr human breast cancer cells through cell cycle arrest and down regulation of P-glycoprotein expression. Int J Oncol. 2014;44(1):167–176.
  • Kim R. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer. 2005;103(8):1551–1560.
  • Tainton KM, Smyth MJ, Jackson JT, et al. Mutational analysis of P-glycoprotein: suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death Differ. 2004;11(9):1028–1037.
  • Fadok VA, Voelker DR, Campbell PA, et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148(7):2207–2216.
  • Aller SG, Yu J, Ward A, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009;323(5922):1718–1722.
  • Yang J, Yan R, Roy A, et al. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12(1):7–8.
  • Mohamed HM, Fouda AM, Khattab ES, et al. Synthesis, in-vitro cytotoxicity of 1H-benzo[f]chromene derivatives and structure–activity relationships of the 1-aryl group and 9-position. Z Naturforsch C J Biosci. 2017;72(5-6):161–171.
  • Sheldrick GM. A short history of SHELX. Acta Crystallogr A. 2008;64(Pt 1):112–122.
  • Sheldrick GM. SHELXTL-PC (version 5.1). Madison (WI): Siemens Analytical Instruments Inc.; 1997.
  • Chaiyarit S, Thongboonkerd V. Comparative analyses of cell disruption methods for mitochondrial isolation in high-throughput proteomics study. Anal Biochem. 2009;394(2):249–258.
  • Shchulkin AV, Abalenikhina YV, Erokhina PD, et al. The role of P-glycoprotein in decreasing cell membranes permeability during oxidative stress. Biochemistry (Mosc). 2021;86(2):197–206.
  • Jouan E, Le Vée M, Mayati A, et al. Evaluation of P-glycoprotein inhibitory potential using a rhodamine 123 accumulation assay. Pharmaceutics. 2016;8(2):12.
  • Tang X, Gu X, Ai H, et al. Synthesis and evaluation of nitric oxide-releasing DDB derivatives as potential Pgp-mediated MDR reversal agents in MCF-7/Adr cells. Bioorg Med Chem Lett. 2012;22(2):801–805.
  • Vindeløv LL, Christensen IJ, Nissen NI. Standardization of high-resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout red blood cells as internal reference standards. Cytometry. 1983;3(5):328–331.
  • Zhang G, Gurtu V, Kain SR, Yan G. Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques. 1997;23(3):525–531.
  • Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739–1749.
  • Lagares LM, Minovski N, Alfonso AYC, et al. Homology modeling of the human p-glycoprotein (ABCB1) and insights into ligand binding through molecular docking studies. Int J Mol Sci. 2020;21(11):4058.
  • Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des. 2010;24(5):417–422.