1,105
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Discovery of coumaric acid derivatives hinted by coastal marine source to seek for uric acid lowering agents

ORCID Icon, , , , &
Article: 2163241 | Received 06 Aug 2022, Accepted 23 Dec 2022, Published online: 11 Jan 2023

References

  • Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–661.
  • Tu YY. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med. 2011;17(10):1217–1220.
  • Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharmaceut. 2002;235(1–2):179–192.
  • Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D. Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev. 2019;119(6):3510–3673.
  • Ruesgas-Ramon M, Figueroa-Espinoza MC, Durand E. Application of deep eutectic solvents (des) for phenolic compounds extraction: overview, challenges, and opportunities. J Agric Food Chem. 2017;65(18):3591–3601.
  • Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006;99(1):191–203.
  • von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Antibacterial natural products in medicinal chemistry – exodus or revival? Angew Chem Int Ed Engl. 2006;45(31):5072–5129.
  • Gordaliza M. Natural products as leads to anticancer drugs. Clin Transl Oncol. 2007;9(12):767–776.
  • Xu XH, Liu YF, Du GC, Ledesma-Amaro R, Liu L. Microbial chassis development for natural product biosynthesis. Trends Biotechnol. 2020;38(7):779–796.
  • Hu ZH, Qin P, Cai M, Xie M, Zhang KX. Anti-inflammatory activity of topically applied total flavonoids of Spartina alterniflora Loisel in vivo. J Plant Resour Environ. 1998;7:6–11.
  • Bazzano M, Elmer W. Interactions and consequences of silicon, nitrogen, and Fusarium palustre on herbivory and DMSP levels of Spartina alterniflora. Estuar Coast Shelf S. 2017;198:106–113.
  • Qin P. Research Progress on the Relationship between Spartina alterniflora and Human Health. Chinese Wild Plant Resour. 2019; 38:70–73.
  • Zhang HS, Zhang HY, Zai XM, Zhao F, Lei P, Liu C, Zhu CL, Qin P. Study on the effect of three natural compounds in Spartina alterniflora on uric acid. Chinese Wild Plant Resour. 2019;38:9–12.
  • Pauff JM, Hille R. Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin. J Nat Prod. 2009;72(4):725–731.
  • He WW, Su GW, Sun-Waterhouse D, Waterhouse GIN, Zhao MM, Liu Y. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions. Food Chem. 2019;272:453–461.
  • Wang YJ, Zhang GW, Pan JH, Gong DM. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase. J Agric Food Chem. 2015;63(2):526–534.
  • Schmidt HM, Kelley EE, Straub AC. The impact of xanthine oxidase (XO) on hemolytic diseases. Redox Biol. 2019;21:101072.
  • Wang J, Van Praagh A, Hamilton E, Wang Q, Zou BX, Muranjan M, Murphy NB, Black SJ. Serum xanthine oxidase: origin, regulation, and contribution to control of trypanosome parasitemia. Antioxid Redox Signal. 2002;4(1):161–178.
  • Lee BE, Toledo AH, Anaya-Prado R, Roach RR, Toledo-Pereyra LH. Allopurinol, xanthine oxidase, and cardiac ischemia. J Investig Med. 2009;57(8):902–909.
  • White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, Hunt B, Castillo M, Gunawardhana L, CARES Investigators. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med. 2018;378(13):1200–1210.
  • Nakamura T, Murase T, Nampei M, Morimoto N, Ashizawa N, Iwanaga T, Sakamoto R. Effects of topiroxostat and febuxostat on urinary albumin excretion and plasma xanthine oxidoreductase activity in dbidb mice. Eur J Pharmacol. 2016;780:224–231.
  • Deswal S, Srivastava A. Role of allopurinol in optimizing thiopurine therapy in patients with autoimmune hepatitis: a review. J Clin Exp Hepatol. 2017;7(1):55–62.
  • Mitsuboshi S, Yamada H, Nagai K, Okajima H. Comparison of clinical advantage between topiroxostat and febuxostat in hemodialysis patients. Biol Pharm Bull. 2017;40(9):1463–1467.
  • Ishikawa T, Maeda T, Hashimoto T, Nakagawa T, Ichikawa K, Sato Y, Kanno Y. Long-term safety and effectiveness of the xanthine oxidoreductase inhibitor, topiroxostat in Japanese hyperuricemic patients with or without gout: a 54-week open-label, multicenter, post-marketing observational study. Clin Drug Investig. 2020;40(9):847–859.
  • Yang YS, Wang B, Zhou KM, Liu JZ, Jiao QC, Qin P. Discovery of derivatives from Spartina alterniflora-sourced moiety as xanthine oxidase inhibitors to lower uric acid. Bioorg Med Chem Lett. 2022;73:128907.
  • Wei B, Zhou J, Xu JJ, Cui J, Ping FF, Ling JJ, Chen YJ. Discovery of coumarin-derived imino sulfonates as a novel class of potential cardioprotective agents. Eur J Med Chem. 2019;184:111779.
  • Bharate SS. Modulation of biopharmaceutical properties of drugs using sulfonate counterions: a critical analysis of FDA-approved pharmaceutical salts. J Drug Deliv Sci Tec. 2021;66:102913.
  • Cao H, Pauff JM, Hille R. X-ray crystal structure of a xanthine oxidase complex with the flavonoid inhibitor quercetin. J Nat Prod. 2014;77(7):1693–1699.
  • Wang B, Wang LR, Liu LL, Wang W, Man RJ, Zheng DJ, Deng YS, Yang YS, Xu C, Zhu HL. A novel series of benzothiazepine derivatives as tubulin polymerization inhibitors with anti-tumor potency. Bioorg Chem. 2021;108:104585.
  • Zhang L, Tian JY, Cheng HZ, Yang YJ, Yang Y, Ye F, Xiao ZY. Identification of novel xanthine oxidase inhibitors via virtual screening with enhanced characterization of molybdopterin binding groups. Eur J Med Chem. 2022;230:114101.
  • Zhao JX, Mao Q, Lin FW, Zhang B, Sun M, Zhang TJ, Wang SJ. Intramolecular hydrogen bond interruption and scaffold hopping of TMC-5 led to 2-(4-alkoxy-3-cyanophenyl)pyrimidine-4/5-carboxylic acids and 6-(4-alkoxy-3-cyanophenyl)-1,2-dihydro-3H-pyrazolo[3,4-d]pyrimidin-3-ones as potent pyrimidine-based xanthine oxidase inhibitors. Eur J Med Chem. 2022;229:114086.
  • Lin HY, Han HW, Sun WX, Yang YS, Tang CY, Lu GH, Qi JL, Wang XM, Yang YH. Design and characterization of a-lipoic acyl shikonin ester twin drugs as tubulin and PDK1 dual inhibitors. Eur J Med Chem. 2018;144:137–150.
  • El-Adl K, El-Helby AGA, Ayyad RR, Mahdy HA, Khalifa MM, Elnagar HA, Mehany ABM, Metwaly AM, Elhendawy MA, Radwan MM, ElSohly MA, Eissa IH. Design, synthesis, and anti-proliferative evaluation of new quinazolin-4 (3H)-ones as potential VEGFR-2 inhibitors. Bioorg Med Chem. 2021;29:115872.
  • Li MH, Wu KR, Chen Z, Sun LY, Huang XQ, Hu XG, Lan T. Establishment and optimization of a hyperuricemic nephropathy mouse model. Acta Pharm Sin. 2022;57:1673–1678.
  • Xu LQ, Lin GS, Yu QX, Mai LQ, Cheng LT, Xie JJ, Liu JH, Su YH, Li Yc ZR. Anti-hyperuricemic and nephroprotective effects of dihydroberberine in potassium oxonate- and hypoxanthine-induced hyperuricemic mice. Front Pharmacol 2021;12:645879.
  • Niu YF, Zhou YF, Lin H, Gao LH, Xiong WY, Zhu HJ, Zou CG, Li L. Inhibition of 3,5,2',4'-tetrahydroxychalcone on production of uric acid in hypoxanthine-induced hyperuricemic mice. Biol Pharm Bull. 2018;41(1):99–105.