1,059
Views
2
CrossRef citations to date
0
Altmetric
Brief Report

New isoxazolidinyl-based N-alkylethanolamines as new activators of human brain carbonic anhydrases

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2164574 | Received 09 Nov 2022, Accepted 29 Dec 2022, Published online: 11 Jan 2023

References

  • Supuran CT. Structure and function of carbonic anhydrases. Biochem J. 2016;473(14):2023–2032.
  • Supuran CT, Scozzafava A. Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opinion on Therapeutic Patents. 2000;10(5):575–600.
  • Alterio V, Di Fiore A, D'Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev. 2012;112(8):4421–4468.
  • Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci. 2021;135(10):1233–1249.
  • Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem. 2012;27(6):759–772.
  • Cuffaro D, Nuti E, Rossello A. An overview of carbohydrate-based carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem. 2020;35(1):1906–1922.
  • Masini E, Carta F, Scozzafava A, Supuran CT. Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert Opin Ther Pat. 2013;23(6):705–716.
  • Ciccone L, Cerri C, Nencetti S, Orlandini E. Carbonic anhydrase inhibitors and epilepsy: state of the art and future perspectives. Molecules. 2021;26(21):6380.
  • Scozzafava A, Supuran CT, Carta F. Antiobesity carbonic anhydrase inhibitors: a literature and patent review. Expert Opin Ther Pat. 2013;23(6):725–735.
  • Poli G, Galati S, Martinelli A, Supuran CT, Tuccinardi T. Development of a cheminformatics platform for selectivity analyses of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem. 2020;35(1):365–371.
  • Fischer T, Senn N, Riedl R. Design and structural evolution of matrix metalloproteinase inhibitors. Chemistry. 2019;25(34):7960–7980.
  • Nuti E, Cuffaro D, Bernardini E, Camodeca C, Panelli L, Chaves S, Ciccone L, Tepshi L, Vera L, Orlandini E, et al. Development of thioaryl-based matrix metalloproteinase-12 inhibitors with alternative zinc-binding groups: synthesis, potentiometric, NMR, and crystallographic studies. J Med Chem. 2018;61(10):4421–4435.
  • Cuffaro D, Camodeca C, D'Andrea F, Piragine E, Testai L, Calderone V, Orlandini E, Nuti E, Rossello A. Matrix metalloproteinase-12 inhibitors: synthesis, structure-activity relationships and intestinal absorption of novel sugar-based biphenylsulfonamide carboxylates. Bioorg Med Chem. 2018;26(22):5804–5815.
  • Nuti E, Rossello A, Cuffaro D, Camodeca C, Van Bael J, van der Maat D, Martens E, Fiten P, Pereira RVS, Ugarte-Berzal E, et al. Bivalent inhibitor with selectivity for trimeric mmp-9 amplifies neutrophil chemotaxis and enables functional studies on mmp-9 proteoforms. Cells. 2020;9(7):1634.
  • Blandina P, Provensi G, Passsani MB, Capasso C, Supuran CT. Carbonic anhydrase modulation of emotional memory. Implications for the treatment of cognitive disorders. J Enzyme Inhib Med Chem. 2020;35(1):1206–1214.
  • Datta R, Shah GN, Rubbelke TS, Waheed A, Rauchman M, Goodman AG, Katze MG, Sly WS. Progressive renal injury from transgenic expression of human carbonic anhydrase IV folding mutants is enhanced by deficiency of p58IPK. Proc Natl Acad Sci USA. 2010;107(14):6448–6452.
  • Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004;24(3):272.
  • van Karnebeek CD, Sly WS, Ross CJ, Salvarinova R, Yaplito-Lee J, Santra S, Shyr C, Horvath GA, Eydoux P, Lehman AM, et al. Mitochondrial carbonic anhydrase VA deficiency resulting from CA5A alterations presents with hyperammonemia in early childhood. Am J Hum Genet. 2014;94(3):453–461.
  • Feinstein Y, Yerushalmi B, Loewenthal N, Alkrinawi S, Birk OS, Parvari R, Hershkovitz E. Natural history and clinical manifestations of hyponatremia and hyperchlorhidrosis due to carbonic anhydrase XII deficiency. Horm Res Paediatr. 2014;81(5):336–342.
  • Boyne K, Corey DA, Zhao P, Lu B, Boron WF, Moss FJ, Kelley TJ. Carbonic anhydrase and soluble adenylate cyclase regulation of cystic fibrosis cellular phenotypes. Am J Physiol Lung Cell Mol Physiol. 2022;322(3):L333–L347.
  • Canto de Souza L, Provensi G, Vullo D, Carta F, Scozzafava A, Costa A, Schmidt SD, Passani MB, Supuran CT, Blandina P. Carbonic anhydrase activation enhances object recognition memory in mice through phosphorylation of the extracellular signal-regulated kinase in the cortex and the hippocampus. Neuropharmacology. 2017; 118(118148):148–156.
  • Schmidt SD, Costa A, Rani B, Godfried Nachtigall E, Passani MB, Carta F, Nocentini A, de Carvalho Myskiw J, Furini CRG, Supuran CT, et al. The role of carbonic anhydrases in extinction of contextual fear memory. Proc Natl Acad Sci USA. 2020;117(27):16000–16008.
  • Wang X, Schröder HC, Schlossmacher U, Neufurth M, Feng Q, Diehl-Seifert B, Müller WEG. Modulation of the initial mineralization process of SaOS-2 cells by carbonic anhydrase activators and polyphosphate. Calcif Tissue Int. 2014;94(5):495–509.
  • Sun MK, Alkon DL. Pharmacological enhancement of synaptic efficacy, spatial learning, and memory through carbonic anhydrase activation in rats. J Pharmacol Exp Ther. 2001;297(3):961–967.
  • Supuran CT. Carbonic anhydrase activators. Future Med Chem. 2018;10(5):561–573.
  • Elder I, Tu C, Ming L-J, McKenna R, Silverman DN. Proton transfer from exogenous donors in catalysis by human carbonic anhydrase II. Arch Biochem Biophys. 2005;437(1):106–114.
  • Angeli A, Berrino E, Carradori S, Supuran CT, Cirri M, Carta F, Costantino G. Amine- and amino acid-based compounds as carbonic anhydrase activators. Molecules. 2021;26(23):7331.
  • Temperini C, Scozzafava A, Vullo D, Supuran CT. Carbonic anhydrase activators. Activation of isozymes I, II, IV, VA, VII, and XIV with l- and d-histidine and crystallographic analysis of their adducts with isoform II: engineering proton-transfer processes within the active site of an enzyme. Chemistry. 2006;12(27):7057–7066.
  • Provensi G, Nocentini A, Passani MB, Blandina P, Supuran CT. Activation of carbonic anhydrase isoforms involved in modulation of emotional memory and cognitive disorders with histamine agonists, antagonists and derivatives. J Enzyme Inhib Med Chem. 2021;36(1):719–726.
  • Tanini D, Capperucci A, Supuran CT, Angeli A. Sulfur, selenium and tellurium containing amines act as effective carbonic anhydrase activators. Bioorg Chem. 2019; 87(87516):516–522.
  • Nocentini A, Cuffaro D, Ciccone L, Orlandini E, Nencetti S, Nuti E, Rossello A, Supuran CT. Activation of carbonic anhydrases from human brain by amino alcohol oxime ethers: towards human carbonic anhydrase VII selective activators. J Enzyme Inhib Med Chem. 2021;36(1):48–57.
  • Maccallini C, Di Matteo M, Vullo D, Ammazzalorso A, Carradori S, De Filippis B, Fantacuzzi M, Giampietro L, Pandolfi A, Supuran CT, et al. Indazole, pyrazole, and oxazole derivatives targeting nitric oxide synthases and carbonic anhydrases. ChemMedChem. 2016;11(16):1695–1699.
  • Sugimoto A, Ikeda H, Tsukamoto H, Kihira K, Ishioka M, Hirose J, Hata T, Fujioka H, Ono Y. Timolol activates the enzyme activities of human carbonic anhydrase I and II. Biol Pharm Bull. 2010;33(2):301–306.
  • Balsamo A, Breschi M, Chini M, Domiano P, Giannaccini G, Lucacchini A, Macchia B, Macchia M, Manera C, Martinelli A, et al. Conformationally restrained β-blocking oxime ethers: synthesis and β-adrenergic properties of diastereoisomeric anti and syn 2-(5′-isoxazolidinyl)-ethanolamines. Eur J Med Chem. 1992;27(8):751–764.
  • Balsamo A, Breschi M, Chiellini G, Lucacchini A, Macchia M, Martinelli A, Martini C, Nardini C, Orlandini E, Romagnoli F, et al. Conformationally restrained β-blocking oxime ethers. 2. Synthesis and β-adrenergic properties of diastereoisomeric anti and syn 2-(5′-(3′-aryl-substituted)isoxazolidinyl)-N-alkylethanolamines. Eur J Med Chem . 1994;29(11):855–867.
  • Breschi M, Macchia M, Manera C, Micali E, Nardini C, Nencetti S, Rossello A, Scatizzi R. Conformationally restrained β-blocking oxime ethers. 3. Synthesis and β-adrenergic antagonistic activity of diastereomeric anti and syn 2-(5′-(3′-methyl)isoxazolidinyl)-N-alkylethanolamines. Eur J Med Chem. 1996;31(2):159–163.
  • Ramos BP, Colgan L, Nou E, Ovadia S, Wilson SR, Arnsten AFT. The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biol Psychiatry. 2005;58(11):894–900.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem. 1971;246(8):2561–2573.
  • Liu X, Lu D, Bowser R, Liu J. Expression of carbonic anhydrase i in motor neurons and alterations in ALS. IJMS. 2016;17(11):1820.
  • Halmi P, Parkkila S, Honkaniemi J. Expression of carbonic anhydrases II, IV, VII, VIII and XII in rat brain after kainic acid induced status epilepticus. Neurochem Int. 2006;48(1):24–30.
  • Svichar N, Waheed A, Sly WS, Hennings JC, Hübner CA, Chesler M. Carbonic anhydrases CA4 and CA14 both enhance AE3-mediated Cl–HCO3- exchange in hippocampal neurons. J Neurosci. 2009;29(10):3252–3258.
  • Ruusuvuori E, Kaila K. Carbonic anhydrases and brain pH in the control of neuronal excitability. Subcell Biochem. 2014;75:75271–75290.