1,132
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Synthesis and structure–activity relationships of pyrazole-based inhibitors of meprin α and β

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2165648 | Received 30 Sep 2022, Accepted 02 Jan 2023, Published online: 20 Jan 2023

References

  • Drag M, Salvesen GS. Emerging principles in protease-based drug discovery. Nat Rev Drug Discov. 2010;9(9):690–701.
  • Gomis-Rüth FX, Trillo-Muyo S, Stöcker W. Functional and structural insights into astacin metallopeptidases. Biol Chem. 2012;393(10):1027–1041.
  • Sterchi EE, Stöcker W, Bond JS. Meprins, membrane-bound and secreted astacin metalloproteinases. Mol Asp Med. 2008;29(5):309–328.
  • Scharfenberg F, Armbrust F, Marengo L, Pietrzik C, Becker-Pauly C. Regulation of the alternative β-secretase meprin β by ADAM-mediated shedding. Cell Mol Life Sci. 2019;76(16):3193–3206.
  • Peters F, Scharfenberg F, Colmorgen C, Armbrust F, Wichert R, Arnold P, Potempa B, Potempa J, Pietrzik CU, Häsler R, et al. Tethering soluble meprin α in an enzyme complex to the cell surface affects IBD-associated genes. FASEB J. 2019;33(6):7490–7504.
  • Broder C, Becker-Pauly C. The metalloproteases meprin α and meprin β: unique enzymes in inflammation, neurodegeneration, cancer and fibrosis. Biochem J. 2013;450(2):253–264.
  • Prox J, Arnold P, Becker-Pauly C. Meprin α and meprin β: procollagen proteinases in health and disease. Matrix Biol. 2015;44-46:7–13.
  • Lottaz D, Maurer CA, Hahn D, Büchler MW, Sterchi EE. Nonpolarized secretion of human meprin alpha in colorectal cancer generates an increased proteolytic potential in the stroma. Cancer Res. 1999;59(5):1127–1133.
  • Lottaz D, Maurer CA, Noël A, Blacher S, Huguenin M, Nievergelt A, Niggli V, Kern A, Müller S, Seibold F, et al. Enhanced activity of meprin-α, a pro-migratory and pro-angiogenic protease, in colorectal cancer. PLOS One. 2011;6(11):e26450.
  • Minder P, Bayha E, Becker-Pauly C, Sterchi EE. Meprinα transactivates the epidermal growth factor receptor (EGFR) via ligand shedding, thereby enhancing colorectal cancer cell proliferation and migration. J Biol Chem. 2012;287(42):35201–35211.
  • Wang X, Chen J, Wang J, Yu F, Zhao S, Zhang Y, Tang H, Peng Z. Metalloproteases meprin-ɑ (MEP1A) is a prognostic biomarker and promotes proliferation and invasion of colorectal cancer. BMC Cancer. 2016;16(1):383.
  • OuYang H-Y, Xu J, Luo J, Zou R-H, Chen K, Le Y, Zhang Y-F, Wei W, Guo R-P, Shi M. MEP1A contributes to tumor progression and predicts poor clinical outcome in human hepatocellular carcinoma. Hepatology. 2016;63(4):1227–1239.
  • Breig O, Yates M, Neaud V, Couchy G, Grigoletto A, Lucchesi C, Prox J, Zucman-Rossi J, Becker-Pauly C, Rosenbaum J. Metalloproteinase meprin α regulates migration and invasion of human hepatocarcinoma cells and is a mediator of the oncoprotein reptin. Oncotarget. 2017;8(5):7839–7851.
  • Grainger AT, Pilar N, Li J, Chen M-H, Abramson AM, Becker-Pauly C, Shi W. Identification of Mep1a as a susceptibility gene for atherosclerosis in mice. Genetics. 2021;219(4):iyab160.
  • Ge W, Hou C, Zhang W, Guo X, Gao P, Song X, Gao R, Liu Y, Guo W, Li B, et al. Mep1a contributes to Ang II-induced cardiac remodeling by promoting cardiac hypertrophy, fibrosis and inflammation. J Mol Cell Cardiol. 2021;152:52–68.
  • Gao R, Liu D, Guo W, Ge W, Fan T, Li B, Gao P, Liu B, Zheng Y, Wang J. Mep1A enhances TNF-alpha secretion by mast cells and aggravates abdominal aortic aneurysms. Br J Pharmacol. 2020;177(12):2872–2885.
  • Schäffler H, Li W, Helm O, Krüger S, Böger C, Peters F, Röcken C, Sebens S, Lucius R, Becker-Pauly C, et al. The cancer-associated meprin β variant G32R provides an additional activation site and promotes cancer cell invasion. J Cell Sci. 2019;132(11):jcs220665.
  • Gellrich A, Scharfenberg F, Peters F, Sammel M, Helm O, Armbrust F, Schmidt F, Lokau J, Garbers C, Sebens S, et al. Characterization of the cancer-associated meprin βeta variants G45R and G89R. Front Mol Biosci. 2021;8:702341.
  • Bien J, Jefferson T, Causevic M, Jumpertz T, Munter L, Multhaup G, Weggen S, Becker-Pauly C, Pietrzik CU. The metalloprotease meprin generates amino terminal-truncated amyloid peptide species. J Biol Chem. 2012;287(40):33304–33313.
  • Schönherr C, Bien J, Isbert S, Wichert R, Prox J, Altmeppen H, Kumar S, Walter J, Lichtenthaler SF, Weggen S, et al. Generation of aggregation prone N-terminally truncated amyloid β peptides by meprin β depends on the sequence specificity at the cleavage site. Mol Neurodegener. 2016;11(11):19.
  • Becker-Pauly C, Pietrzik CU. The metalloprotease meprin β is an alternative β-secretase of APP. Front Mol Neurosci. 2016;9:159.
  • Armbrust F, Colmorgen C, Pietrzik CU, Becker-Pauly C. The Alzheimer’s disease associated bacterial protease RgpB from P. gingivalis activates the alternative β-secretase meprin β thereby increasing Aβ generation. bioRxiv. 2019:748814.
  • Berner DK, Wessolowski L, Armbrust F, Schneppenheim J, Schlepckow K, Koudelka T, Scharfenberg F, Lucius R, Tholey A, Kleinberger G, et al. Meprin β cleaves TREM2 and controls its phagocytic activity on macrophages. FASEB J. 2020;34(5):6675–6687.
  • Broder C, Arnold P, Vadon-Le Goff S, Konerding MA, Bahr K, Muller S, Overall CM, Bond JS, Koudelka T, Tholey A, et al. Metalloproteases meprin and meprin are C- and N-procollagen proteinases important for collagen assembly and tensile strength. Proc Natl Acad Sci USA. 2013;110(35):14219–14224.
  • Biasin V, Marsh LM, Egemnazarov B, Wilhelm J, Ghanim B, Klepetko W, Wygrecka M, Olschewski H, Eferl R, Olschewski A, et al. Meprin β, a novel mediator of vascular remodelling underlying pulmonary hypertension. J Pathol. 2014;233(1):7–17.
  • Biasin V, Wygrecka M, Marsh LM, Becker-Pauly C, Brcic L, Ghanim B, Klepetko W, Olschewski A, Kwapiszewska G. Meprin β contributes to collagen deposition in lung fibrosis. Sci Rep. 2017;7:39969.
  • Kruse M-N, Becker C, Lottaz D, Köhler D, Yiallouros I, Krell H-W, Sterchi EE, Stöcker W. Human meprin alpha and beta homo-oligomers: cleavage of basement membrane proteins and sensitivity to metalloprotease inhibitors. Biochem J. 2004;378(Pt 2):383–389.
  • Herzog C, Haun RS, Kaushal GP. Role of meprin metalloproteinases in cytokine processing and inflammation. Cytokine. 2019;114:18–25.
  • Herzog C, Seth R, Shah SV, Kaushal GP. Role of meprin A in renal tubular epithelial cell injury. Kidney Int. 2007;71(10):1009–1018.
  • Kaushal GP, Haun RS, Herzog C, Shah SV. Meprin A metalloproteinase and its role in acute kidney injury. Am J Physiol Renal Physiol. 2013;304(9):F1150–F1158.
  • Herzog C, Marisiddaiah R, Haun RS, Kaushal GP. Basement membrane protein nidogen-1 is a target of meprin β in cisplatin nephrotoxicity. Toxicol Lett. 2015;236(2):110–116.
  • Banerjee S, Bond JS. Prointerleukin-18 is activated by meprin beta in vitro and in vivo in intestinal inflammation. J Biol Chem. 2008;283(46):31371–31377.
  • Banerjee S, Jin G, Bradley SG, Matters GL, Gailey RD, Crisman JM, Bond JS. Balance of meprin A and B in mice affects the progression of experimental inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2011;300(2):G273–G282.
  • Vandenbroucke RE, Libert C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov. 2014;13(12):904–927.
  • Dufour A, Overall CM. Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol Sci. 2013;34(4):233–242.
  • Madoux F, Tredup C, Spicer TP, Scampavia L, Chase PS, Hodder PS, Fields GB, Becker-Pauly C, Minond D. Development of high throughput screening assays and pilot screen for inhibitors of metalloproteases meprin α and β. Biopolymers. 2014;102(5):396–406.
  • Ramsbeck D, Hamann A, Schlenzig D, Schilling S, Buchholz M. First insight into structure–activity relationships of selective meprin β inhibitors. Bioorg Med Chem Lett. 2017;27(11):2428–2431.
  • Ramsbeck D, Hamann A, Richter G, Schlenzig D, Geissler S, Nykiel V, Cynis H, Schilling S, Buchholz M. Structure-guided design, synthesis, and characterization of next-generation meprin β inhibitors. J Med Chem. 2018;61(10):4578–4592.
  • Tan K, Jäger C, Schlenzig D, Schilling S, Buchholz M, Ramsbeck D. Tertiary-amine-based inhibitors of the astacin protease meprin α. ChemMedChem. 2018;13(16):1619–1624.
  • Linnert M, Fritz C, Jäger C, Schlenzig D, Ramsbeck D, Kleinschmidt M, Wermann M, Demuth H-U, Parthier C, Schilling S. Structure and dynamics of meprin β in complex with a hydroxamate-based inhibitor. IJMS. 2021;22(11):5651.
  • Becker-Pauly C, Barré O, Schilling O, Auf Dem Keller U, Ohler A, Broder C, Schütte A, Kappelhoff R, Stöcker W, Overall CM. Proteomic analyses reveal an acidic prime side specificity for the astacin metalloprotease family reflected by physiological substrates. Mol Cell Proteomics. 2011;10(9):M111.009233.
  • Villa JP, Bertenshaw GP, Bond JS. Critical amino acids in the active site of meprin metalloproteinases for substrate and peptide bond specificity. J Biol Chem. 2003;278(43):42545–42550.
  • Hou S, Diez J, Wang C, Becker-Pauly C, Fields GB, Bannister T, Spicer TP, Scampavia LD, Minond D. Discovery and optimization of selective inhibitors of meprin α (part I). Pharmaceuticals. 2021;14(3):203.
  • Wang C, Diez J, Park H, Spicer TP, Scampavia LD, Becker-Pauly C, Fields GB, Minond D, Bannister TD. Discovery and optimization of selective inhibitors of meprin α (part II). Pharmaceuticals. 2021;14(3):197.
  • Tan K, Jäger C, Körschgen H, Geissler S, Schlenzig D, Buchholz M, Stöcker W, Ramsbeck D. Heteroaromatic inhibitors of the astacin proteinases meprin α, meprin β and ovastacin discovered by a scaffold-hopping approach. ChemMedChem. 2021;16(6):976–988.
  • Heller ST, Natarajan SR. 1,3-diketones from acid chlorides and ketones: a rapid and general one-pot synthesis of pyrazoles. Org Lett. 2006;8(13):2675–2678.
  • Riley K, Tran K-A. Strength and character of R–X···π interactions involving aromatic amino acid sidechains in protein-ligand complexes derived from crystal structures in the protein data bank. Crystals. 2017;7(9):273.
  • Adiguzel E, Yilmaz F, Emirik M, Ozil M. Synthesis and characterization of two new hydroxamic acids derivatives and their metal complexes. An investigation on the keto/enol, E/Z and hydroxamate/hydroximate forms. J Mol Struct. 2017;1127:403–412.
  • Citarella A, Moi D, Pinzi L, Bonanni D, Rastelli G. Hydroxamic acid derivatives: from synthetic strategies to medicinal chemistry applications. ACS Omega. 2021;6(34):21843–21849.
  • Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. ‎J. Mol. Biol. 1997;267(3):727–748.
  • Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins. 2003;52(4):609–623.
  • Lovell SC, Word JM, Richardson JS, Richardson DC. The penultimate rotamer library. Proteins. 2000;40(3):389–408.
  • Molecular operating environment (MOE), 2019.01. Montreal: Chemical Computing Group ULC; 2019.
  • Schlenzig D, Wermann M, Ramsbeck D, Moenke-Wedler T, Schilling S. Expression, purification and initial characterization of human meprin β from Pichia pastoris. Protein Expr Purif. 2015;116:75–81.
  • Bayly-Jones C, Lupton CJ, Fritz C, Venugopal H, Ramsbeck D, Wermann M, Jäger C, Marco A. d, Schilling S, Schlenzig D. Helical ultrastructure of the metalloprotease meprin α in complex with a small molecule inhibitor. Nat Commun. 2022;13(1):6178.
  • Morrison JF. Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochim Biophys Acta. 1969;185(2):269–286.