1,029
Views
3
CrossRef citations to date
0
Altmetric
Brief Report

Sulphonamide inhibition studies of the β-carbonic anhydrase GsaCAβ present in the salmon platyhelminth parasite Gyrodactylus salaris

ORCID Icon, , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Article: 2167988 | Received 07 Dec 2022, Accepted 09 Jan 2023, Published online: 17 Jan 2023

References

  • Aspatwar A, Barker H, Aisala H, et al. Cloning, purification, kinetic and anion inhibition studies of a recombinant β-carbonic anhydrase from the Atlantic salmon parasite platyhelminth Gyrodactylus salaris. J Enzyme Inhib Med Chem 2022;37:1577–86.
  • Paladini G, Shinn AP, Taylor NGH, et al. Geographical distribution of Gyrodactylus salaris Malmberg, 1957 (Monogenea, Gyrodactylidae). Parasit Vectors 2021;14:34.
  • Zueva KJ, Lumme J, Veselov AE, et al. Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo salar). Mar Genomics 2018;39:26–38.
  • Hansen H, Cojocaru CD, Mo TA. Infections with Gyrodactylus spp. (Monogenea) in Romanian fish farms: Gyrodactylus salaris Malmberg, 1957 extends its range. Parasit Vectors 2016;9:444.
  • Ramírez R, Bakke TA, Harris PD. Same barcode, different biology: differential patterns of infectivity, specificity and pathogenicity in two almost identical parasite strains. Int J Parasitol 2014;44:543–9.
  • Hopkins C. Introduced marine organisms in Norwegian waters, including Svalbard. Parasites and diseases. In: Leppakoski E, Gollasch S, Olenin S, eds. Invasive aquatic species of Europe. Distribution, impacts and management. Dordrecht: Springer Netherlands; 2002:13–25.
  • (a) Schelkle B, Shinn AP, Peeler E, et al. Treatment of gyrodactylid infections in fish. Dis Aquat Organ 2009;86:65–75. (b) Soleng A, Poléo AB, Alstad NE, et al. Aqueous aluminium eliminates Gyrodactylus salaris (Platyhelminthes, Monogenea) infections in Atlantic salmon. Parasitology 1999;119 (Pt 1):19–25. (c) Schmahl G. The chemotherapy of monogeneans which parasitize fish: a review. Folia Parasitol (Praha) 1991;38:97–106.
  • (a) Feldmeier H, Chitsulo L. Therapeutic and operational profiles of metrifonate and praziquantel in Schistosoma haematobium infection. Arzneimittelforschung 1999;49:557–65. (b) Kramer CV, Zhang F, Sinclair D, et al. Drugs for treating urinary schistosomiasis. Cochrane Database Syst Rev 2014;2014:CD000053.
  • (a) Skelly PJ, Nation CS, Da’Dara AA. Schistosoma mansoni and the purinergic halo. Trends Parasitol 2022;38:1080–8. (b) Skelly PJ, Da’dara AA. Schistosome secretomes. Acta Trop 2022;236:106676. (c) Nation CS, Da’Dara AA, Skelly PJ. NAD-catabolizing ectoenzymes of Schistosoma mansoni. Biochem J 2022;479:1165–80. (d) Acharya S, Da’dara AA, Skelly PJ. Schistosome immunomodulators. PLoS Pathog 2021;17:e1010064.
  • (a) Da’dara AA, Angeli A, Ferraroni M, et al. Crystal structure and chemical inhibition of essential schistosome host-interactive virulence factor carbonic anhydrase SmCA. Commun Biol 2019;2:333. (b) Angeli A, Pinteala M, Maier SS, et al. Sulfonamide inhibition studies of an α-carbonic anhydrase from Schistosoma mansoni, a platyhelminth parasite responsible for schistosomiasis. Int J Mol Sci 2020;21:1842. (c) Angeli A, Ferraroni M, Da’dara AA, et al. Structural insights into Schistosoma mansoni Carbonic Anhydrase (SmCA) inhibition by selenoureido-substituted benzenesulfonamides. J Med Chem 2021;64:10418–28.
  • (a) Ferraroni M, Angeli A, Carradori S, et al. Inhibition of Schistosoma mansoni carbonic anhydrase by the antiparasitic drug clorsulon: X-ray crystallographic and in vitro studies. Acta Crystallogr D Struct Biol 2022;78(Pt 3):321–7. (b) Angeli A, Ferraroni M, Carta F, et al. Development of praziquantel sulphonamide derivatives as antischistosomal drugs. J Enzyme Inhib Med Chem 2022;37:1479–94.
  • Aspatwar A, Tolvanen MEE, Barker H, et al. Carbonic anhydrases in metazoan model organisms: molecules, mechanisms, and physiology. Physiol Rev 2022;102:1327–83.
  • Hooper PL, Swenson ER, Johnson RJ. Carbonic anhydrase inhibitors for the treatment of high-altitude hypoxemia. Am J Med 2019;132:e799–800.
  • Nocentini A, Angeli A, Carta F, et al. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021;36:561–80.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81.
  • (a) Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond)) 2021;135:1233–49. (b) Supuran CT. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin Ther Pat 2018;28:709–12. (c) Supuran CT. Applications of carbonic anhydrases inhibitors in renal and central nervous system diseases. Expert Opin Ther Pat 2018;28:713–21. (d) Ferraroni M, Angeli A, Pinteala M, et al. Sulfonamide diuretic azosemide as an efficient carbonic anhydrase inhibitor. J Mol Struct 2022;1268:133672.
  • (a) Mishra CB, Kumari S, Angeli A, et al. Discovery of potent carbonic anhydrase inhibitors as effective anticonvulsant agents: drug design, synthesis, and in vitro and in vivo investigations. J Med Chem 2021;64:3100–14. (b) Mishra CB, Kumari S, Angeli A, et al. Discovery of potent anti-convulsant carbonic anhydrase inhibitors: design, synthesis, in vitro and in vivo appraisal. Eur J Med Chem 2018;156:430–43. (c) Shukralla AA, Dolan E, Delanty N. Acetazolamide: old drug, new evidence? Epilepsia Open 2022;7:378–92. (d) Ciccone L, Cerri C, Nencetti S, et al. Carbonic anhydrase inhibitors and epilepsy: state of the art and future perspectives. Molecules 2021;26:6380.
  • (a) Supuran CT. Multitargeting approaches involving carbonic anhydrase inhibitors: hybrid drugs against a variety of disorders. J Enzyme Inhib Med Chem 2021;36:1702–14. (b) Mincione F, Nocentini A, Supuran CT. Advances in the discovery of novel agents for the treatment of glaucoma. Expert Opin Drug Discov 2021;16:1209–25. (c) Bonardi A, Nocentini A, Bua S, et al. Sulfonamide inhibitors of human carbonic anhydrases designed through a three-tails approach: improving ligand/isoform matching and selectivity of action. J Med Chem 2020;63:7422–44.
  • (a) Supuran CT. Anti-obesity carbonic anhydrase inhibitors: challenges and opportunities. J Enzyme Inhib Med Chem 2022;37:2478–88. (b) Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: where are we today? Med Res Rev 2020;40:2485–565. (c) Muñoz W, Lamm A, Poppers D, et al. Acetazolamide promotes decreased consumption of carbonated drinks and weight loss. Oxf Med Case Reports 2018;2018:omy081. (d) Supuran CT. Carbonic anhydrases and metabolism. Metabolites 2018;8:25.
  • (a) Angeli A, Carta F, Nocentini A, et al. Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment. Metabolites 2020;10:412. (b) McDonald PC, Chafe SC, Supuran CT, et al. Cancer therapeutic targeting of hypoxia induced carbonic anhydrase IX: from bench to bedside. Cancers (Basel) 2022;14:3297. (c) Chafe SC, Vizeacoumar FS, Venkateswaran G, et al. Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors. Sci Adv 2021;7:eabj0364. (d) Supuran CT. Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2018;27:963–70. (e) Supuran CT. Carbonic anhydrase inhibitors: an update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2021;30:1197–208.
  • (a) Angeli A, Urbański LJ, Capasso C, et al. Activation studies with amino acids and amines of a β-carbonic anhydrase from Mammaliicoccus (Staphylococcus) sciuri previously annotated as Staphylococcus aureus (SauBCA) carbonic anhydrase. J Enzyme Inhib Med Chem 2022;37:2786–92. (b) An W, Holly KJ, Nocentini A, et al. Structure-activity relationship studies for inhibitors for vancomycin-resistant Enterococcus and human carbonic anhydrases. J Enzyme Inhib Med Chem 2022;37:1838–44. (c) Giovannuzzi S, Hewitt CS, Nocentini A, et al. Coumarins effectively inhibit bacterial α-carbonic anhydrases. J Enzyme Inhib Med Chem 2022;37:333–8. (d) Abutaleb NS, Elhassanny AEM, Nocentini A, et al. Repurposing FDA-approved sulphonamide carbonic anhydrase inhibitors for treatment of Neisseria gonorrhoeae. J Enzyme Inhib Med Chem 2022;37:51–61. (e) Flaherty DP, Seleem MN, Supuran CT. Bacterial carbonic anhydrases: underexploited antibacterial therapeutic targets. Future Med Chem 2021;13:1619–22. (f) Hewitt CS, Abutaleb NS, Elhassanny AEM, et al. Structure-activity relationship studies of acetazolamide-based carbonic anhydrase inhibitors with activity against Neisseria gonorrhoeae. ACS Infect Dis 2021;7:1969–84. (g) De Luca V, Giovannuzzi S, Supuran CT, et al. May sulfonamide inhibitors of carbonic anhydrases from Mammaliicoccus sciuri Prevent antimicrobial resistance due to gene transfer to other harmful Staphylococci? Int J Mol Sci 2022;23:13827. (h) Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat 2020;30:963–82.
  • (a) Angeli A, Velluzzi A, Selleri S, et al. Seleno containing compounds as potent and selective antifungal agents. ACS Infect Dis 2022;8:1905–19. (b) De Luca V, Angeli A, Mazzone V, et al. Heterologous expression and biochemical characterisation of the recombinant β-carbonic anhydrase (MpaCA) from the warm-blooded vertebrate pathogen malassezia pachydermatis. J Enzyme Inhib Med Chem 2022;37:62–8. (c) Supuran CT, Capasso C. A highlight on the inhibition of fungal carbonic anhydrases as drug targets for the antifungal armamentarium. Int J Mol Sci 2021;22:4324.
  • (a) Bonardi A, Parkkila S, Supuran CT. Inhibition studies of the protozoan α-carbonic anhydrase from Trypanosoma cruzi with phenols. J Enzyme Inhib Med Chem 2022; 37:2417–22. (b) Urbański LJ, Angeli A, Mykuliak VV, et al. Biochemical and structural characterization of beta-carbonic anhydrase from the parasite Trichomonas vaginalis. J Mol Med (Berl) 2022;100:115–24. (c) Syrjänen L, Vermelho AB, Rodrigues IDA, et al. Cloning, characterization, and inhibition studies of a β-carbonic anhydrase from Leishmania donovani chagasi, the protozoan parasite responsible for leishmaniasis. J Med Chem 2013;56:7372–81. (d) Pal DS, Mondal DK, Datta R. Identification of metal dithiocarbamates as a novel class of antileishmanial agents. Antimicrob Agents Chemother 2015;59:2144–52. (e) Pal DS, Abbasi M, Mondal DK, et al. Interplay between a cytosolic and a cell surface carbonic anhydrase in pH homeostasis and acid tolerance of Leishmania. J Cell Sci 2017;130:754–66. (f) Reungprapavut S, Krungkrai SR, Krungkrai J. Plasmodium falciparum carbonic anhydrase is a possible target for malaria chemotherapy. J Enzyme Inhib Med Chem 2004;19:249–56. (g) Krungkrai J, Krungkrai SR, Supuran CT. Carbonic anhydrase inhibitors: inhibition of Plasmodium falciparum carbonic anhydrase with aromatic/heterocyclic sulfonamides-in vitro and in vivo studies. Bioorg Med Chem Lett 2008;18:5466–71.
  • (a) Zolfaghari Emameh R, Kuuslahti M, Vullo D, et al. Ascaris lumbricoides β carbonic anhydrase: a potential target enzyme for treatment of ascariasis. Parasit Vectors 2015;8:479. (b) Zolfaghari Emameh R, Barker H, Hytönen VP, et al. Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry. Parasit Vectors 2014;7:403. (c) Zolfaghari Emameh R, Syrjänen L, Barker H, et al. Drosophila melanogaster: a model organism for controlling Dipteran vectors and pests. J Enzyme Inhib Med Chem 2015;30:505–13.
  • (a) Abbate F, Winum JY, Potter BV, et al. Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with EMATE, a dual inhibitor of carbonic anhydrases and steroid sulfatase. Bioorg Med Chem Lett 2004;14:231–4. (b) Supuran CT, Clare BW. Carbonic anhydrase inhibitors. Part 57. Quantum chemical QSAR of a group of 1,3,4-thiadiazole and 1,3,4-thiadiazoline disulfonamides with carbonic anhydrase inhibitory properties. Eur J Med Chem 1999; 34:41–50. (c) Gieling RG, Babur M, Mamnani L, et al. Antimetastatic effect of sulfamate carbonic anhydrase IX inhibitors in breast carcinoma xenografts. J Med Chem 2012;55:5591–600.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 1971;246:2561–73.
  • (a) Nishimori I, Minakuchi T, Morimoto K, et al. Carbonic anhydrase inhibitors: DNA cloning and inhibition studies of the alpha-carbonic anhydrase from Helicobacter pylori, a new target for developing sulfonamide and sulfamate gastric drugs. J Med Chem 2006;49:2117–26. (b) Zimmerman SA, Ferry JG, Supuran CT. Inhibition of the archaeal beta-class (Cab) and gamma-class (Cam) carbonic anhydrases. Curr Top Med Chem 2007;7:901–8.
  • (a) Sarikaya SB, Gülçin I, Supuran CT. Carbonic anhydrase inhibitors: Inhibition of human erythrocyte isozymes I and II with a series of phenolic acids. Chem Biol Drug Des 2010;75:515–20. (b) Supuran CT. Carbonic anhydrase inhibitors from marine natural products. Mar Drugs. 2022;20:721.