4,020
Views
9
CrossRef citations to date
0
Altmetric
Review

Research progress of natural products and their derivatives against Alzheimer’s disease

, , , , &
Article: 2171026 | Received 13 Nov 2022, Accepted 17 Jan 2023, Published online: 20 Feb 2023

References

  • Liu X-Y, Wang X-J, Shi L, Liu Y-H, Wang L, Li K, Bu Q, Cen X-B, Yu X-Q. Rational design of quinoxalinone-based red-emitting probes for high-affinity and long-term visualizing amyloid-β in vivo. Anal Chem. 2022;94(21):7665–7673.
  • Zhu Z, Lu S, Wang S-H, Gorriz JM, Zhang Y-D. DSNN: a dense net-based SNN for explainable brain disease classification. Front Syst Neurosci. 2022;16:838822.
  • Ostrovskaya RU, Belnik AP, Storozheva ZI. Noopept efficiency in experimental Alzheimer disease (cognitive deficiency caused by β-amyloid25-35 injection into Meynert basal nuclei of rats). Bull Exp Biol Med. 2008;146(1):77–80.
  • Sultzer DL, Lim AC, Gordon HL, Yarns BC, Melrose RJ. Cholinergic receptor binding in unimpaired older adults, mild cognitive impairment, and Alzheimer’s disease dementia. Alzheimers Res Ther. 2022;14(1):25.
  • Skovronsky DM, Doms RW, Lee VMY. Detection of a novel intraneuronal pool of insoluble amyloid β protein that accumulates with time in culture. J Cell Biol. 1998;141(4):1031–1039.
  • Zhou X-W, Li X, Bjorkdahl C, Sjogren MJ, Alafuzoff I, Soininen H, Grundke-Iqbal I, Iqbal K, Winblad B, Pei J-J, et al. Assessments of the accumulation severities of amyloid β-protein and hyperphosphorylated tau in the medial temporal cortex of control and Alzheimer’s brains. Neurobiol Dis. 2006;22(3):657–668.
  • Wang C, Liu P, Wang XL, Chen C, Fu XQ, Zhang B. Metal ions and Alzheimer’s disease. Sichuan Yixue. 2008;29:467–469.
  • Panda P, Verma HK, Lakkakula S, Merchant N, Kadir F, Rahman S, Jeffree MS, Lakkakula BVKS, Rao PV. Biomarkers of oxidative stress tethered to cardiovascular diseases. Oxid Med Cell Longev. 2022;2022:9154295.
  • Rivas-Arancibia S, Rodriguez-Martinez E, Mendez-Garcia A, Moctezuma-Salgado M, Jimenez-Espindola P, Lopez-Gonzales U. Oxidative stress, inflammation, and formation of beta- amyloid 1-42 in brain. Free Radicals and Diseases 2016;113–130.
  • Hoye AT, Davoren JE, Wipf P, Fink MP, Kagan VE. Targeting mitochondria. Acc Chem Res. 2008;41(1):87–97.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803.
  • Deng H, Huang X, Jin C, Jin C-M, Quan Z-S. Synthesis, in vitro and in vivo biological evaluation of dihydroartemisinin derivatives with potential anti-Toxoplasma gondii agents. Bioorg Chem. 2020;94:103467.
  • Pang L, Liu C-Y, Gong G-H, Quan Z-S. Synthesis, in vitro and in vivo biological evaluation of novel lappaconitine derivatives as potential anti-inflammatory agents. Acta Pharm Sin B. 2020;10(4):628–645.
  • Wang YL, Jin LL, Cheng X, Yan WF, Deng H, Shen QK, Quan ZS, Jin CM, Zhang CH. Synthesis and evaluation of in vitro and in vivo anti-Toxoplasma gondii activity of tetraoxane-substituted ursolic acid derivatives. Nat Prod Res. 2022.
  • de la Torre BG, Albericio F. The pharmaceutical industry in 2020. An analysis of FDA drug approvals from the perspective of molecules. Molecules. 2021; 26:627.
  • Patridge E, Gareiss P, Kinch MS, Hoyer D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today. 2016;21(2):204–207.
  • Wang N-Y, Li J-N, Liu W-L, Huang Q, Li W-X, Tan Y-H, Liu F, Song Z-H, Wang M-Y, Xie N, et al. Ferulic acid ameliorates Alzheimer’s disease-like pathology and repairs cognitive decline by preventing capillary hypofunction in aPP/PS1 mice. Neurotherapeutics. 2021;18(2):1064–1080.
  • Mori T, Koyama N, Tan J, Segawa T, Maeda M, Town T. Combined treatment with the phenolics (-)-epigallocatechin-3-gallate and ferulic acid improves cognition and reduces Alzheimer-like pathology in mice. J Biol Chem. 2019;294(8):2714–2731.
  • Singh YP, Tej GNVC, Pandey A, Priya K, Pandey P, Shankar G, Nayak PK, Rai G, Chittiboyina AG, Doerksen RJ, et al. Design, synthesis and biological evaluation of novel naturally-inspired multifunctional molecules for the management of Alzheimer’s disease. Eur J Med Chem. 2020;198:112257.
  • Zhu G, Bai P, Wang K, Mi J, Yang J, Hu J, Ban Y, Xu R, Chen R, Wang C, et al. Design, synthesis, and evaluation of novel O-alkyl ferulamide derivatives as multifunctional ligands for treating Alzheimer’s disease. J Enzyme Inhib Med Chem. 2022;37(1):1375–1388.
  • Lan J-S, Zeng R-F, Jiang X-Y, Hou J-W, Liu Y, Hu Z-H, Li H-X, Li Y, Xie S-S, Ding Y, et al. Design, synthesis and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Bioorg Chem. 2020;94:103413.
  • He F, Chou CJ, Scheiner M, Poeta E, Yuan Chen N, Gunesch S, Hoffmann M, Sotriffer C, Monti B, Maurice T, et al. Melatonin- and ferulic acid-based HDAC6 selective inhibitors exhibit pronounced immunomodulatory effects in vitro and neuroprotective effects in a pharmacological Alzheimer’s disease mouse model. J Med Chem. 2021;64(7):3794–3812.
  • Fonseca A, Reis J, Silva T, Matos MJ, Bagetta D, Ortuso F, Alcaro S, Uriarte E, Borges F. Coumarin versus chromone monoamine oxidase B inhibitors: quo vadis? J Med Chem. 2017;60(16):7206–7212.
  • Orhan IE, Tosun F, Senol Deniz FS, et al. Butyrylcholinesterase-inhibiting natural coumarin molecules as potential leads. Phytochem Lett. 2021;44:48–54.
  • He Q, Liu J, Lan J-S, Ding J, Sun Y, Fang Y, Jiang N, Yang Z, Sun L, Jin Y, et al. Coumarin-dithiocarbamate hybrids as novel multitarget AChE and MAO-B inhibitors against Alzheimer’s disease: design, synthesis and biological evaluation. Bioorg Chem. 2018; 81:512–528.
  • Macklin LJ, Schwans JP. Synthesis, biochemical evaluation, and molecular modeling of organophosphate-coumarin hybrids as potent and selective butyrylcholinesterase inhibitors. Bioorg Med Chem Lett. 2020;30(13):127213.
  • Dhiman P, Malik N, Khatkar A. Lead optimization for promising monoamine oxidase inhibitor from eugenol for the treatment of neurological disorder: synthesis and in silico based study. BMC Chem. 2019;13(1):38.
  • Adefegha SA, Okeke BM, Oboh G. Antioxidant properties of eugenol, butylated hydroxylanisole, and butylated hydroxyl toluene with key biomolecules relevant to Alzheimer’s diseases-in vitro. J Food Biochem. 2021;45(3):e13276.
  • Taheri P, Yaghmaei P, Tehrani HS, et al. Effects of eugenol on Alzheimer’s disease-like manifestations in insulin- and Aβ-induced rat models. Neurophysiology. 2019;51:114–119.
  • Chowdhury S, Kumar S. Inhibition of BACE1, MAO-B, cholinesterase enzymes, and anti-amyloidogenic potential of selected natural phytoconstituents: multi-target-directed ligand approach. J Food Biochem. 2021;45(1):e13571.
  • James I, Manisha C, Choephel T, et al. Ethanolic extract of acorus calamus linn and eugenol combination improved the cognitive functions of streptozotocin administrated rats through attenuation of lipid peroxidation and acetylcholine esterase level. J Global Trends Pharm Sci. 2019;10:5870–5881.
  • Carradori S, Gidaro MC, Petzer A, Costa G, Guglielmi P, Chimenti P, Alcaro S, Petzer JP. Inhibition of human monoamine oxidase: biological and molecular modeling studies on selected natural flavonoids. J Agric Food Chem. 2016;64(47):9004–9011.
  • Desideri N, Bolasco A, Fioravanti R, Monaco LP, Orallo F, Yáñez M, Ortuso F, Alcaro S. Homoisoflavonoids: natural scaffolds with potent and selective monoamine oxidase-B inhibition properties. J Med Chem. 2011;54(7):2155–2164.
  • Chimenti F, Cottiglia F, Bonsignore L, Casu L, Casu M, Floris C, Secci D, Bolasco A, Chimenti P, Granese A, et al. Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: extraction, biological analysis, and computational study. J Nat Prod. 2006;69(6):945–949.
  • Gidaro MC, Astorino C, Petzer A, Carradori S, Alcaro F, Costa G, Artese A, Rafele G, Russo FM, Petzer JP, et al. Kaempferol as selective human MAO-A inhibitor: analytical detection in calabrian red wines, biological and molecular modeling studies. J Agric Food Chem. 2016;64(6):1394–1400.
  • Dhiman P, Malik N, Khatkar A. In silico design, synthesis of hybrid combinations: quercetin based MAO inhibitors with antioxidant potential. Curr Top Med Chem. 2019;19(2):156–170.
  • Chen Y-P, Zhang Z-Y, Li Y-P, Li D, Huang S-L, Gu L-Q, Xu J, Huang Z-S. Syntheses and evaluation of novel isoliquiritigenin derivatives as potential dual inhibitors for amyloid-beta aggregation and 5-lipoxygenase. Eur J Med Chem. 2013; 66:22–31.
  • Guan L, Peng D, Zhang L, Jia J, Jiang H. Design, synthesis, and cholinesterase inhibition assay of liquiritigenin derivatives as anti-Alzheimer’s activity. Bioorg Med Chem Lett. 2021;52:128306.
  • Chimenti F, Fioravanti R, Bolasco A, Chimenti P, Secci D, Rossi F, Yáñez M, Orallo F, Ortuso F, Alcaro S. Chalcones: a valid scaffold for monoamine oxidases inhibitors. J Med Chem. 2009;52:2818–2824.
  • Bai P, Wang K, Zhang P, Shi J, Cheng X, Zhang Q, Zheng C, Cheng Y, Yang J, Lu X, et al. Development of chalcone-O-alkylamine derivatives as multifunctional agents against Alzheimer’s disease. Eur J Med Chem. 2019;183:111737.
  • Sakata RP, Antoniolli G, Lancellotti M, Kawano DF, Guimarães Barbosa E, Almeida WP. Synthesis and biological evaluation of 2'-aminochalcone: a multi-target approach to find drug candidates to treat Alzheimer’s disease. Bioorg Chem. 2020;103:104201.
  • Yuan X, Wang Z, Zhang L, Sui R, Khan S. Exploring the inhibitory effects of liquiritigenin against tau fibrillation and related neurotoxicity as a model of preventive care in Alzheimer’s disease. Int J Biol Macromol. 2021;183:1184–1190.
  • Du Y, Luo M, Du Y, Xu M, Yao Q, Wang K, He G. Liquiritigenin decreases Aβ levels and ameliorates cognitive decline by regulating microglia M1/M2 transformation in AD mice. Neurotox Res. 2021;39(2):349–358.
  • Lee HK, Yang E-J, Kim JY, Song K-s, Seong YH. Inhibitory effects of glycyrrhizae radix and its active component, isoliquiritigenin, on Aβ(25-35)-induced neurotoxicity in cultured rat cortical neurons. Arch Pharm Res. 2012;35(5):897–904.
  • Shekhar S, Yadav SK, Rai N, Kumar R, Yadav Y, Tripathi M, Dey AB, Dey S. 5-LOX in Alzheimer’s disease: potential serum marker and in vitro evidences for rescue of neurotoxicity by its inhibitor YWCS. Mol Neurobiol. 2018;55(4):2754–2762.
  • Dhakal S, Ramsland PA, Adhikari B, Macreadie I. Trans-chalcone plus baicalein synergistically reduce intracellular amyloid beta (Abeta42) and protect from Abeta42 induced oxidative damage in yeast models of Alzheimer’s disease. Int J Mol Sci. 2021;22:9456.
  • Oh JM, Kang M-G, Hong A, Park J-E, Kim SH, Lee JP, Baek SC, Park D, Nam S-J, Cho M-L, Kim H. Potent and selective inhibition of human monoamine oxidase-B by 4-dimethylaminochalcone and selected chalcone derivatives. Int J Biol Macromol. 2019;137:426–432.
  • Li J-M, Zhang Y, Tang L, Chen Y-H, Gao Q, Bao M-H, Xiang J, Lei D-L. Effects of triptolide on hippocampal microglial cells and astrocytes in the APP/PS1 double transgenic mouse model of Alzheimer’s disease. Neural Regen Res. 2016;11(9):1492–1498.
  • Wang Q, Xiao B, Cui S, Song H, Qian Y, Dong L, An H, Cui Y, Zhang W, He Y, et al. Triptolide treatment reduces Alzheimer’s disease (AD)-like pathology through inhibition of BACE1 in a transgenic mouse model of AD. Dis Model Mech. 2014;7(12):1385–1395.
  • Cheng S, LeBlanc KJ, Li L. Triptolide preserves cognitive function and reduces neuropathology in a mouse model of Alzheimer’s disease. PLOS One. 2014;9(9):e108845.
  • Ning C, Mo L, Chen X, Tu W, Wu J, Hou S, Xu J. Triptolide derivatives as potential multifunctional anti-Alzheimer agents: synthesis and structure-activity relationship studies. Bioorg Med Chem Lett. 2018;28(4):689–693.
  • Xu Y, Wei H, Wang J, Wang W, Gao J. Synthesis of andrographolide analogues and their neuroprotection and neurite outgrowth-promoting activities. Bioorg Med Chem. 2019;27(11):2209–2219.
  • Dey A, Chen R, Li F, Maitra S, Hernandez JF, Zhou GC, Vincent B. Synthesis and characterization of andrographolide derivatives as regulators of beta APP processing in human cells. Molecules. 2021;26:7660.
  • Abdel Bar FM, Elimam DM, Mira AS, El-Senduny FF, Badria FA. Derivatization, molecular docking and in vitro acetylcholinesterase inhibitory activity of glycyrrhizin as a selective anti-Alzheimer agent. Nat Prod Res. 2019;33(18):2591–2599.
  • Schwarz S, Lucas SD, Sommerwerk S, Csuk R. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases. Bioorg Med Chem. 2014;22(13):3370–3378.
  • De Monte C, Carradori S, Chimenti P, Secci D, Mannina L, Alcaro F, Petzer A, N'Da CI, Gidaro MC, Costa G, et al. New insights into the biological properties of Crocus sativus L.: chemical modifications, human monoamine oxidases inhibition and molecular modeling studies. Eur J Med Chem. 2014;82:164–171.
  • Burgos RA, Alarcon P, Quiroga J, Manosalva C, Hancke J. Andrographolide, an anti-inflammatory multitarget drug: all roads lead to cellular metabolism. Molecules. 2021;26:5.
  • Gu LL, Yu QQ, Li Q, Zhang L, Lu H, Zhang X. Andrographolide protects PC12 cells against β-amyloid-induced autophagy-associated cell death through activation of the Nrf2-mediated p62 signaling pathway. Int J Mol Sci. 2018;19:2844/1–2844/15.
  • Arredondo SB, Reyes DT, Herrera-Soto A, Mardones MD, Inestrosa NC, Varela-Nallar L. Andrographolide promotes hippocampal neurogenesis and spatial memory in the APPswe/PS1ΔE9 mouse model of Alzheimer’s disease. Sci Rep. 2021;11(1):22904.
  • Patel R, Kaur K, Singh S. Protective effect of andrographolide against STZ induced Alzheimer’s disease in experimental rats: possible neuromodulation and Aβ(1-42) analysis. Inflammopharmacology. 2021;29(4):1157–1168.
  • Miranda A, Montiel E, Ulrich H, Paz C. Selective secretase targeting for Alzheimer’s disease therapy. J Alzheimers Dis. 2021;81(1):1–17.
  • Wagle A, Seong SH, Zhao BT, Woo MH, Jung HA, Choi JS. Comparative study of selective in vitro and in silico BACE1 inhibitory potential of glycyrrhizin together with its metabolites, 18 alpha- and 18 beta-glycyrrhetinic acid, isolated from Hizikia fusiformis. Arch Pharm Res. 2018;41(4):409–418.
  • Jeong GS, Kang MG, Lee JY, Lee SR, Park D, Cho M, Kim H. Inhibition of butyrylcholinesterase and human monoamine oxidase-B by the coumarin glycyrol and liquiritigenin isolated from Glycyrrhiza uralensis. Molecules. 2020;25:3896.
  • Wei JC, Huang HH, Zhong NF, Gao YN, Liu XL, Long GQ, Hu GS, Wang AH, Jia JM. Euphorfistrines A-G, cytotoxic and AChE inhibiting triterpenoids from the roots of Euphorbia fischeriana. Bioorg Chem. 2021;116:105395.
  • Forouzanfar F, Asadpour E, Hosseinzadeh H, Boroushaki MT, Adab A, Dastpeiman SH, Sadeghnia HR. Safranal protects against ischemia-induced PC12 cell injury through inhibiting oxidative stress and apoptosis. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(4):707–716.
  • Rafieipour F, Hadipour E, Emami SA, Asili J, Tayarani-Najaran Z. Safranal protects against beta-amyloid peptide-induced cell toxicity in PC12 cells via MAPK and PI3 K pathways. Metab Brain Dis. 2019;34(1):165–172.
  • Nanda S, Madan K. The role of Safranal and saffron stigma extracts in oxidative stress, diseases and photoaging: a systematic review. Heliyon. 2021;7(2):e06117.
  • Som S, Antony J, Dhanabal S, Ponnusankar S. Neuroprotective role of Diosgenin, a NGF stimulator, against Aβ (1-42) induced neurotoxicity in animal model of Alzheimers disease. Metab Brain Dis. 2022;37(2):359–372.
  • Yang XM, Tohda C. Diosgenin restores Aβ-induced axonal degeneration by reducing the expression of heat shock cognate 70 (HSC70). Sci Rep. 2018;8:1–10.
  • Yang XM, Tohda C. Heat shock cognate 70 inhibitor, VER-155008, reduces memory deficits and axonal degeneration in a mouse model of Alzheimer’s disease. Front Pharmacol. 2018;9:48/1–48/11.
  • Matosevic A, Bosak A. Carbamate group as structural motif in drugs: a review of carbamate derivatives used as therapeutic agents. Arh Hig Rada Toksikol. 2020;71(4):285–299.
  • Yang G-X, Huang Y, Zheng L-L, Zhang L, Su L, Wu Y-H, Li J, Zhou L-C, Huang J, Tang Y, et al. Design, synthesis and evaluation of diosgenin carbamate derivatives as multitarget anti-Alzheimer’s disease agents. Eur J Med Chem. 2020;187:111913.
  • Zhou L-C, Liang Y-F, Huang Y, Yang G-X, Zheng L-L, Sun J-M, Li Y, Zhu F-L, Qian H-W, Wang R, et al. Design, synthesis, and biological evaluation of diosgenin-indole derivatives as dual-functional agents for the treatment of Alzheimer’s disease. Eur J Med Chem. 2021;219:113426.
  • Huang Y, Huang W, Yang G, Wang R, Ma L. Design and synthesis of novel diosgenin-triazole hybrids targeting inflammation as potential neuroprotective agents. Bioorg Med Chem Lett. 2021;43:128092.
  • Yang G-X, Ge S-L, Wu Y, Huang J, Li S-L, Wang R, Ma L. Design, synthesis and biological evaluation of 3-piperazinecarboxylate sarsasapogenin derivatives as potential multifunctional anti-Alzheimer agents. Eur J Med Chem. 2018; 156:206–215.
  • Wang W, Wang W, Yao G, Ren Q, Wang D, Wang Z, Liu P, Gao P, Zhang Y, Wang S, et al. Novel sarsasapogenin-triazolyl hybrids as potential anti-Alzheimer’s agents: design, synthesis and biological evaluation. Eur J Med Chem. 2018;151:351–362.
  • Feng B, Zhao X-Y, Song Y-Z, Liang W-N, Liu J-L. Sarsasapogenin reverses depressive-like behaviors and nicotinic acetylcholine receptors induced by olfactory bulbectomy. Neurosci Lett. 2017;639:173–178.
  • Kashyap P, Muthusamy K, Niranjan M, Trikha S, Kumar S. Sarsasapogenin: a steroidal saponin from Asparagus racemosus as multi target directed ligand in Alzheimer’s disease. Steroids. 2020;153:108529.
  • Wang L, Jin Y, Sui HJ, Qu W, Yu S, Jin Y, Li H. Protection of sarsasapogenin against amyloid beta-protein induced neurotoxicity in primary cultured hippocampal neurons of neonatal rats. Zhongguo Yaolixue Yu Dulixue Zazhi. 2013;27:629–634.
  • Wang Z-D, Yao G-D, Wang W, Wang W-B, Wang S-J, Song S-J. Synthesis and evaluation of 26-amino acid methyl ester substituted sarsasapogenin derivatives as neuroprotective agents for Alzheimer’s disease. Steroids. 2017;125:93–106.
  • Colabufo NA, Leopoldo M, Perrone R, Berardi F. Preparation of cyclohexyl-substituted piperazine compounds for treating Alzheimer’s disease. EP2703387A1, 2014.
  • Nazifi M, Oryan S, Esfahani DE, Ashrafpoor M. The functional effects of piperine and piperine plus donepezil on hippocampal synaptic plasticity impairment in rat model of Alzheimer’s disease. Life Sci. 2021;265:118802.
  • Kumar S, Chowdhury S, Razdan A, Kumari D, Purty RS, Ram H, Kumar P, Nayak P, Shukla SD. Downregulation of candidate gene expression and neuroprotection by piperine in streptozotocin-induced hyperglycemia and memory impairment in rats. Front Pharmacol. 2020;11:595471.
  • Hsieh TY, Chang Y, Wang SJ. Piperine provides neuroprotection against kainic acid-induced neurotoxicity via maintaining NGF signalling pathway. Molecules. 2022;27:2638.
  • Yang X, Ji J, Liu C, Zhou M, Li H, Ye S, Hu Q. HJ22, a Novel derivative of piperine, Attenuates ibotenic acid-induced cognitive impairment, oxidativestress, apoptosis and inflammation via inhibiting the protein-protein interaction of Keap1-Nrf2. Int Immunopharmacol. 2020;83:106383.
  • Fakhri S, Pesce M, Patruno A, Moradi SZ, Iranpanah A, Farzaei MH, Sobarzo-Sánchez E. Attenuation of Nrf2/Keap1/ARE in Alzheimer’s disease by plant secondary metabolites: a mechanistic review. Molecules. 2020;25:4926.
  • He L, Sun Y. The potential role of Keap1-Nrf2 pathway in the pathogenesis of Alzheimer’s disease, type 2 diabetes, and type 2 diabetes-related Alzheimer’s disease. Metab Brain Dis. 2021;36:1469–1479.
  • Qi G, Mi Y, Wang Y, Li R, Huang S, Li X, Liu X. Neuroprotective action of tea polyphenols on oxidative stress-induced apoptosis through the activation of the TrkB/CREB/BDNF pathway and Keap1/Nrf2 signaling pathway in SH-SY5Y cells and mice brain. Food Funct. 2017;8(12):4421–4432.
  • Nag S, Tang F. Cholinergic lesions of the rat brain by ibotenic acid and 192 IgG-saporin: effects on somatostatin, substance P and neuropeptide Y levels in the cerebral cortex and the hippocampus. Neurosci Lett. 1998;252(2):83–86.
  • Yang X, Zhi J, Leng H, Chen Y, Gao H, Ma J, Ji J, Hu Q. The piperine derivative HJ105 inhibits Abeta1-42-induced neuroinflammation and oxidative damage via the Keap1-Nrf2-TXNIP axis. Phytomedicine. 2021;87:153571.
  • Liu W, Liu X, Tian L, Gao Y, Liu W, Chen H, Jiang X, Xu Z, Ding H, Zhao Q, et al. Design, synthesis and biological evaluation of harmine derivatives as potent GSK-3beta/DYRK1A dual inhibitors for the treatment of Alzheimer’s disease. Eur J Med Chem. 2021;222:113554.
  • Liu W, Liu X, Liu W, Gao Y, Wu L, Huang Y, Chen H, Li D, Zhou L, Wang N, et al. Discovery of novel beta-carboline derivatives as selective AChE inhibitors with GSK-3beta inhibitory property for the treatment of Alzheimer’s disease. Eur J Med Chem. 2022;229:114095.
  • Dong P-L, Li Z, Teng C-L, Yin X, Cao X-K, Han H. Synthesis and evolution of neuroprotective effects of oxymatrine derivatives as anti-Alzheimer’s disease agents. Chem Biol Drug Des. 2021;98(1):175–181.
  • Jiang B, Meng L, Zou N, Wang H, Li S, Huang L, Cheng X, Wang Z, Chen W, Wang C, et al. Mechanism-based pharmacokinetics-pharmacodynamics studies of harmine and harmaline on neurotransmitters regulatory effects in healthy rats: challenge on monoamine oxidase and acetylcholinesterase inhibition. Phytomedicine. 2019;62:152967.
  • He D, Wu H, Wei Y, Liu W, Huang F, Shi H, Zhang B, Wu X, Wang C. Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice. Eur J Pharmacol. 2015;768:96–107.
  • Zhang Y, Li S, Wang Y, Deng G, Cao N, Wu C, Ding W, Wang Y, Cheng X, Wang C. Potential pharmacokinetic drug(-)drug interaction between harmine, a cholinesterase inhibitor, and memantine, a non-competitive N-methyl-d-aspartate receptor antagonist. Molecules. 2019;24(7):1430.
  • Jiang X-Y, Chen T-K, Zhou J-T, He S-Y, Yang H-Y, Chen Y, Qu W, Feng F, Sun H-P. Dual GSK-3beta/AChE inhibitors as a new strategy for multitargeting anti-Alzheimer’s disease drug discovery. ACS Med Chem Lett. 2018;9(3):171–176.
  • Pradeepkiran JA, Munikumar M, Reddy AP, Reddy PH. Protective effects of a small molecule inhibitor ligand against hyperphosphorylated tau-induced mitochondrial and synaptic toxicities in Alzheimer disease. Hum Mol Genet. 2021;31(2):244–261.
  • Dong P, Ji X, Han W, Han H. Oxymatrine attenuates amyloid beta 42 (A beta(1-42))-induced neurotoxicity in primary neuronal cells and memory impairment in rats. Can J Physiol Pharmacol. 2019;97(2):99–106.
  • Chen Y, Qi Z, Qiao B, Lv Z, Hao Y, Li H. Oxymatrine can attenuate pathological deficits of Alzheimer’s disease mice through regulation of neuroinflammation. J Neuroimmunol. 2019;334:576978.