854
Views
4
CrossRef citations to date
0
Altmetric
Brief Report

Inhibition studies with simple and complex (in)organic anions of the γ-carbonic anhydrase from Mammaliicoccus (Staphylococcus) sciuri, MscCAγ

, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2173748 | Received 28 Dec 2022, Accepted 23 Jan 2023, Published online: 31 Jan 2023

References

  • (a) Aspatwar A, Tolvanen MEE, Barker H, Syrjänen L, Valanne S, Purmonen S, Waheed A, Sly WS, Parkkila S. Carbonic anhydrases in metazoan model organisms: molecules, mechanisms, and physiology. Physiol Rev. 2022;102(3):1327–1383. (b) Supuran CT. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nature Rev Drug Discov. 2008;7:168–181. (c) Aspatwar A, Supuran CT, Waheed A, Sly WS, Parkkila S. Mitochondrial carbonic anhydrase VA and VB: properties and roles in health and disease. J Physiol. 2022;601(2):257–274.
  • (a) Capasso C, Supuran CT. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem. 2015;30(2):325–332. (b) Flaherty DP, Seleem MN, Supuran CT. Bacterial carbonic anhydrases: underexploited antibacterial therapeutic targets. Future Med Chem. 2021;13(19):1619–1622. (c) De Luca V, Carginale V, Supuran CT, Capasso C. The gram-negative bacterium Escherichia coli as a model for testing the effect of carbonic anhydrase inhibition on bacterial growth. J Enzyme Inhib Med Chem. 2022;37:2092–2098. (d) Capasso C, Supuran CT. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin Ther Targets. 2015; 19:1689–1704. (e) Supuran CT, Capasso C. Biomedical applications of prokaryotic carbonic anhydrases. Expert Opin Ther Pat. 2018;28(10):745–754. (f) Nocentini A, Capasso C, Supuran CT. Carbonic anhydrase inhibitors as Novel antibacterials in the era of antibiotic resistance: Where are we now? Antibiotics. 2023;12(1):142.
  • (a) Angeli A, Urbański LJ, Capasso C, Parkkila S, Supuran CT. Activation studies with amino acids and amines of a β-carbonic anhydrase from Mammaliicoccus (Staphylococcus) sciuri previously annotated as Staphylococcus aureus (SauBCA) carbonic anhydrase. J Enzyme Inhib Med Chem. 2022;37(1):2786–2792. (b) Da’dara AA, Angeli A, Ferraroni M, Supuran CT, Skelly PJ. Crystal structure and chemical inhibition of essential schistosome host-interactive virulence factor carbonic anhydrase SmCA. Commun Biol. 2019;2:333. (c) Vullo D, Del Prete S, Fisher GM, Andrews KT, Poulsen SA, Capasso C, Supuran CT. Sulfonamide inhibition studies of the η-class carbonic anhydrase from the malaria pathogen Plasmodium falciparum. Bioorg Med Chem. 2015;23(3):526–531. (d) Nocentini A, Supuran CT, Capasso C. An overview on the recently discovered iota-carbonic anhydrases. J Enzyme Inhib Med Chem. 2021;36(1):1988–1995. (e) Hewitson KS, Vullo D, Scozzafava A, Mastrolorenzo A, Supuran CT. Molecular cloning, characterization, and inhibition studies of a β-carbonic anhydrase from Malassezia globosa, a potential antidandruff target. J Med Chem. 2012;55(7):3513–3520. (f) Supuran CT, Capasso C. A highlight on the inhibition of fungal carbonic anhydrases as drug targets for the antifungal armamentarium. Int J Mol Sci. 2021; 22(9):4324.
  • (a) Hirakawa Y, Hanawa Y, Yoneda K, Suzuki I. Evolution of a chimeric mitochondrial carbonic anhydrase through gene fusion in a haptophyte alga. FEBS Lett. 2022;596(23):3051–3059. (b) Hirakawa Y, Senda M, Fukuda K, Yu HY, Ishida M, Taira M, Kinbara K, Senda T. Characterization of a novel type of carbonic anhydrase that acts without metal cofactors. BMC Biol. 2021;19(1):105. (c) Pierella Karlusich JJ, Bowler C, Biswas H. Carbon dioxide concentration mechanisms in natural populations of marine diatoms: insights from tara oceans. Front Plant Sci. 2021;12:657821. (d) Jensen EL, Clement R, Kosta A, Maberly SC, Gontero B. A new widespread subclass of carbonic anhydrase in marine phytoplankton. Isme J. 2019;13(8):2094–2106.
  • (a) Supuran CT. Carbonic anhydrases and metabolism. Metabolites. 2018;8(2):25. (b) Angeli A, Carta F, Nocentini A, Winum JY, Zalubovskis R, Akdemir A, Onnis V, Eldehna WM, Capasso C, Simone G, et al. Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment. Metabolites. 2020;10(10):412. (c) Supuran CT. Anti-obesity carbonic anhydrase inhibitors: challenges and opportunities. J Enzyme Inhib Med Chem. 2022;37(1):2478–2488.
  • (a) Flamholz AI, Dugan E, Panich J, Desmarais JJ, Oltrogge LM, Fischer WW, Singer SW, Savage DF. Trajectories for the evolution of bacterial CO2-concentrating mechanisms. Proc Natl Acad Sci USA. 2022;119(49):e2210539119. (b) Langella E, Di Fiore A, Alterio V, Monti SM, De Simone G, D’Ambrosio K. α-CAs from photosynthetic organisms. Int J Mol Sci. 2022;23(19):12045. (c) Crawford JD, Cousins AB. Limitation of C4 photosynthesis by low carbonic anhydrase activity increases with temperature but does not influence mesophyll CO2 conductance. J Exp Bot. 2022;73(3):927–938.
  • (a) Giacomin M, Drummond JM, Supuran CT, Goss GG. The roles of plasma accessible and cytosolic carbonic anhydrases in bicarbonate (HCO3–) excretion in Pacific hagfish (Eptatretus stoutii). J Comp Physiol B. 2022;192(6):713–725. (b) Zhou Z, Qian J, Kini A, Riederer B, Römermann D, Gros G, Seidler U. Loss of luminal carbonic anhydrase XIV results in decreased biliary bicarbonate output, liver fibrosis, and cholangiocyte proliferation in mice. Pflugers Arch. 2022;474(5):529–539. (c) Deniz S, Uysal TK, Capasso C, Supuran CT, Ozensoy Guler O. Is carbonic anhydrase inhibition useful as a complementary therapy of Covid-19 infection? J Enzyme Inhib Med Chem. 2021;36(1):1230–1235.
  • (a) Bejaoui M, Pantazi E, De Luca V, Panisello A, Folch-Puy E, Hotter G, Capasso C, Supuran CT, Roselló-Catafau J. Carbonic anhydrase protects fatty liver grafts against ischemic reperfusion damage. PLoS One. 2015;10(7):e0134499. (b) Lee D, Hong JH. The fundamental role of bicarbonate transporters and associated carbonic anhydrase enzymes in maintaining ion and pH homeostasis in non-secretory organs. Int J Mol Sci. 2020;21(1):339. (c) Bernardino RL, Dias TR, Moreira BP, Cunha M, Barros A, Oliveira E, Sousa M, Alves MG, Oliveira PF. Carbonic anhydrases are involved in mitochondrial biogenesis and control the production of lactate by human Sertoli cells. Febs J. 2019;286(7):1393–1406.
  • (a) Campestre C, De Luca V, Carradori S, Grande R, Carginale V, Scaloni A, Supuran CT, Capasso C. Carbonic anhydrases: new perspectives on protein functional role and inhibition in Helicobacter pylori. Front Microbiol. 2021;12:629163. (b) Kim S, Yeon J, Sung J, Kim NJ, Hong S, Jin MS. Structural insights into novel mechanisms of inhibition of the major β-carbonic anhydrase CafB from the pathogenic fungus Aspergillus fumigatus. J Struct Biol. 2021;213(1):107700. (c) Bonardi A, Nocentini A, Osman SM, Alasmary FA, Almutairi TM, Abdullah DS, Gratteri P, Supuran CT. Inhibition of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae with aromatic sulphonamides and clinically licenced drugs – a joint docking/molecular dynamics study. J Enzyme Inhib Med Chem. 2021;36(1):469–479. (d) Vermelho AB, Rodrigues GC, Supuran CT. Why hasn’t there been more progress in new Chagas disease drug discovery? Expert Opin Drug Discov. 2020;15(2):145–158. e) Beatriz Vermelho A, Rodrigues GC, Nocentini A, Mansoldo FRP, Supuran CT. Discovery of novel drugs for Chagas disease: is carbonic anhydrase a target for antiprotozoal drugs? Expert Opin Drug Discov. 2022;17(10):1147–1158.
  • (a) An W, Holly KJ, Nocentini A, Imhoff RD, Hewitt CS, Abutaleb NS, Cao X, Seleem MN, Supuran CT, Flaherty DP. Structure-activity relationship studies for inhibitors for vancomycin-resistant Enterococcus and human carbonic anhydrases. J Enzyme Inhib Med Chem. 2022;37(1):1838–1844. (b) Giovannuzzi S, Hewitt CS, Nocentini A, Capasso C, Costantino G, Flaherty DP, Supuran CT. Inhibition studies of bacterial α-carbonic anhydrases with phenols. J Enzyme Inhib Med Chem. 2022;37(1):666–671. (c) Giovannuzzi S, Hewitt CS, Nocentini A, Capasso C, Flaherty DP, Supuran CT. Coumarins effectively inhibit bacterial α-carbonic anhydrases. J Enzyme Inhib Med Chem. 2022;37(1):333–338. (d) Abutaleb NS, Elhassanny AEM, Nocentini A, Hewitt CS, Elkashif A, Cooper BR, Supuran CT, Seleem MN, Flaherty DP. Repurposing FDA-approved sulphonamide carbonic anhydrase inhibitors for treatment of Neisseria gonorrhoeae. J Enzyme Inhib Med Chem. 2022;37(1):51–61.
  • (a) Giovannuzzi S, Abutaleb NS, Hewitt CS, Carta F, Nocentini A, Seleem MN, Flaherty DP, Supuran CT. Dithiocarbamates effectively inhibit the α-carbonic anhydrase from Neisseria gonorrhoeae. J Enzyme Inhib Med Chem. 2022;37(1):1–8. (b) Nocentini A, Hewitt CS, Mastrolorenzo MD, Flaherty DP, Supuran CT. Anion inhibition studies of the α-carbonic anhydrases from Neisseria gonorrhoeae. J Enzyme Inhib Med Chem. 2021;36(1):1061–1066. (c) Hewitt CS, Abutaleb NS, Elhassanny AEM, Nocentini A, Cao X, Amos DP, Youse MS, Holly KJ, Marapaka AK, An W, et al. Structure-activity relationship studies of acetazolamide-based carbonic anhydrase inhibitors with activity against Neisseria gonorrhoeae. ACS Infect Dis. 2021;7(7):1969–1984. (d) Kumar Marapaka A, Nocentini A, Youse MS, An W, Holly KJ, Das C, Yadav R, Seleem MN, Supuran CT, Flaherty DP. Structural characterization of thiadiazolesulfonamide inhibitors bound to Neisseria gonorrhoeae α‑carbonic anhydrase. ACS Med Chem Lett. 2022;14(1):103–109.
  • (a) Rahman MM, Tikhomirova A, Modak JK, Hutton ML, Supuran CT, Roujeinikova A. Antibacterial activity of ethoxzolamide against Helicobacter pylori strains SS1 and 26695. Gut Pathog. 2020;12:20. (b) Modak JK, Tikhomirova A, Gorrell RJ, Rahman MM, Kotsanas D, Korman TM, Garcia-Bustos J, Kwok T, Ferrero RL, Supuran CT, et al. Anti-Helicobacter pylori activity of ethoxzolamide. J Enzyme Inhib Med Chem. 2019;34(1):1660–1667. (c) Modak JK, Liu YC, Supuran CT, Roujeinikova A. Structure-activity relationship for sulfonamide inhibition of Helicobacter pylori α-carbonic anhydrase. J Med Chem. 2016;59(24):11098–11109. (d) Modak JK, Liu YC, Machuca MA, Supuran CT, Roujeinikova A. Structural basis for the inhibition of Helicobacter pylori α-carbonic anhydrase by sulfonamides. PLoS One. 2015;10(5):e0127149.
  • Abutaleb NS, Elhassanny AEM, Seleem MN. In vivo efficacy of acetazolamide in a mouse model of Neisseria gonorrhoeae infection. Microb Pathog. 2022;164:105454.
  • (a) Abutaleb NS, Elhassanny AEM, Flaherty DP, Seleem MN. In vitro and in vivo activities of the carbonic anhydrase inhibitor, dorzolamide, against vancomycin-resistant enterococci. PeerJ. 2021;9:e11059. (b) Abutaleb NS, Elkashif A, Flaherty DP, Seleem MN. In vivo antibacterial activity of acetazolamide. Antimicrob Agents Chemother. 2021;65(4):e01715-20. (c) Kaur J, Cao X, Abutaleb NS, Elkashif A, Graboski AL, Krabill AD, AbdelKhalek AH, An W, Bhardwaj A, Seleem MN, et al. Optimization of acetazolamide-based scaffold as potent inhibitors of vancomycin-resistant enterococcus. J Med Chem. 2020;63(17):9540–9562.
  • (a) Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem. 2021;36(1):561–580. (b) Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem. 2016;31(3):345–360. (c) Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev. 2020;40(6):2485–2565.
  • (a) Supuran CT. Coumarin carbonic anhydrase inhibitors from natural sources. J Enzyme Inhib Med Chem. 2020;35(1):1462–1470. (b) Supuran CT. Carbonic anhydrase inhibitors from marine natural products. Mar Drugs. 2022;20(11):721. (c) Atanasov AG, Zotchev SB, Dirsch VM. International natural product sciences taskforce, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200–216.
  • (a) Angeli A, Tanini D, Nocentini A, Capperucci A, Ferraroni M, Gratteri P, Supuran CT. Selenols: a new class of carbonic anhydrase inhibitors. Chem Commun. 2019;55(5):648–651. (b) Tanini D, Capperucci A, Ferraroni M, Carta F, Angeli A, Supuran CT. Direct and straightforward access to substituted alkyl selenols as novel carbonic anhydrase inhibitors. Eur J Med Chem. 2020;185:111811. (c) Angeli A, Carta F, Donnini S, Capperucci A, Ferraroni M, Tanini D, Supuran CT. Selenolesterase enzyme activity of carbonic anhydrases. Chem Commun. 2020;56(32):4444–4447. (d) Angeli A, Ferraroni M, Capperucci A, Tanini D, Costantino G, Supuran CT. Selenocarbamates as a prodrug-based approach to carbonic anhydrase inhibition. ChemMedChem. 2022;17(11):e202200085.
  • Bouzina A, Berredjem M, Nocentini A, Bua S, Bouaziz Z, Jose J, Le Borgne M, Marminon C, Gratteri P, Supuran CT. Ninhydrins inhibit carbonic anhydrases directly binding to the metal ion. Eur J Med Chem. 2021;209:112875.
  • De Luca V, Giovannuzzi S, Supuran CT, Capasso C. May sulfonamide inhibitors of carbonic anhydrases from Mammaliicoccus sciuri prevent antimicrobial resistance due to gene transfer to other harmful staphylococci? Int J Mol Sci. 2022;23(22):13827.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem. 1971; 246:2561–2573.
  • (a) Zimmerman SA, Ferry JG, Supuran CT. Inhibition of the archaeal beta-class (Cab) and gamma-class (Cam) carbonic anhydrases. Curr Top Med Chem. 2007;7(9):901–908. (b) Gieling RG, Babur M, Mamnani L, Burrows N, Telfer BA, Carta F, Winum JY, Scozzafava A, Supuran CT, Williams KJ. Antimetastatic effect of sulfamate carbonic anhydrase IX inhibitors in breast carcinoma xenografts. J Med Chem. 2012;55(11):5591–5600.
  • (a) Mori M, Supuran CT. Acipimox inhibits human carbonic anhydrases. J Enzyme Inhib Med Chem. 2022;37(1):672–679. (b) Nishimori I, Minakuchi T, Morimoto K, Sano S, Onishi S, Takeuchi H, Vullo D, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors: DNA cloning and inhibition studies of the alpha-carbonic anhydrase from Helicobacter pylori, a new target for developing sulfonamide and sulfamate gastric drugs. J Med Chem. 2006;49(6):2117–2126.
  • (a) Maresca A, Supuran CT. Coumarins incorporating hydroxy- and chloro-moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorg Med Chem Lett. 2010;20(15):4511–4514. (b) Gülçin İ, Scozzafava A, Supuran CT, Akıncıoğlu H, Koksal Z, Turkan F, Alwasel S. The effect of caffeic acid phenethyl ester (CAPE) on metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase, and carbonic anhydrase isoenzymes I, II, IX, and XII. J Enzyme Inhib Med Chem. 2016;31(6):1095–1101.
  • De Simone G, Supuran CT. (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem. 2012;111:117–129.
  • Abbate F, Supuran CT, Scozzafava A, Orioli P, Stubbs MT, Klebe G. Nonaromatic sulfonamide group as an ideal anchor for potent human carbonic anhydrase inhibitors: role of hydrogen-bonding networks in ligand binding and drug design. J Med Chem. 2002;45(17):3583–3587.