1,749
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Design, synthesis, docking, and anticancer evaluations of new thiazolo[3,2-a] pyrimidines as topoisomerase II inhibitors

, , &
Article: 2175209 | Received 03 Nov 2022, Accepted 27 Jan 2023, Published online: 12 Feb 2023

References

  • Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol. 2012;13:790–801.
  • Miskovic K, Bujak M, Baus Loncar M, Glavas-Obrovac L. Antineoplastic DNA-binding compounds: intercalating and minor groove binding drugs. Arh Hig Rada Toksikol. 2013;64 (4):593–602.
  • Hurley LH. DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer. 2002;2 (3):188–200.
  • Nemr MTM, Yousif MNM. Barciszewski, Interaction of small molecules with polynucleotide repeats and frameshift site RNA. J. Archiv Der Pharmazie. 2019;352(8):1–7.
  • Plitta-Michalak BP, Naskr˛et-Barciszewska MZ, Barciszewski J, Chmielarz P. DNA methylation as an early indicator of aging in stored seeds of “exceptional” species Populus nigra L. Cells. 2022;11:2080.
  • Xu X, Wu Y, Liu W, Sheng C, Yao J, Dong G, Fang K, Li J, Yu Z, Min X, et al. Discovery of 7-methyl-10-hydroxyhomocamptothecins with 1,2,3-triazole moiety as potent topoisomerase I inhibitors. Chem Biol Drug Des. 2016;88(3):398–403.
  • Pendleton M, Lindsey RH, Felix CA, Grimwade D, Osheroff N. Topoisomerase II and leukemia. Ann N Y Acad Sci. 2014;1310(1):98–110.
  • Yokochi T, Robertson KD. Doxorubicin inhibits DNMT1, resulting in conditional apoptosis. Mol Pharmacol. 2004;66(6):1415–1420.
  • Eissa IH, Metwaly AM, Belal A, Mehany ABM, Ayyad RR, El‐Adl K, Mahdy HA, Taghour MS, El‐Gamal KMA, ME El‐Sawah, et al. Discovery and antiproliferative evaluation of new quinoxalines as potential DNA intercalators and topoisomerase II inhibitors. Arch Pharm. 2019;352:1900123–1900145.
  • Hu W, Huang X-S, Wu J-F, Yang L, Zheng Y-T, Shen Y-M, Li Z, Li X. Discovery of novel topoisomerase ii inhibitors by medicinal chemistry approaches. J Med Chem. 2018;61(20):8947–8980.
  • Sekhar T, Thriveni P, Venkateswarlu A, Daveedu T, Peddanna K, Sainath SB. One-pot synthesis of thiazolo[3,2-a]pyrimidine derivatives, their cytotoxic evaluation and molecular docking studies. Spectrochim Acta A Mol Biomol Spectrosc. 2020;231:118056..
  • Mohamed MM, Khalil AK, Abbass EM, El-Naggar AM. Design, synthesis of new pyrimidine derivatives as anticancer and antimicrobial agents, Synth. Commun. 2017;47:1441–1457.
  • Hassan GS, El-Messery SM, Abbas A. Synthesis and anticancer activity of new thiazolo[3,2-a]pyrimidines: DNA binding and molecular modeling study, Bioorg. Bioorg Chem. 2017;74:41–52.
  • Nemr MTM, Teleb MI, AboulMagd AM, El-Naggar ME, Gouda N, Abdel-Ghany AA, Elshaier YAMM. Design, synthesis and chemoinformatic studies of new thiazolopyrimidine derivatives as potent anticancer agents via phosphodiesterase-5 inhibition and apoptotic inducing activity. J Mol Struct. 2023;1272:134216.
  • Shankaraiah N, Jadala C, Nekkanti S, Senwar KR, Nagesh N, Shrivastava S, Naidu VGM, Sathish M, Kamal A. Design and synthesis of C3-tethered 1,2,3-triazolo-β-carboline derivatives: anticancer activity, DNA-binding ability, viscosity and molecular modeling studies. Bioorg Chem. 2016;64:42–50.
  • Yadav P, Lal K, Kumar A, Guru SK, Jaglan S, Bhushan S. Green synthesis and anticancer potential of chalcone linked-1,2,3- triazoles. Eur J Med Chem. 2017;126:944–953.
  • Esteghamat-Panah R, Hadadzadeh H, Farrokhpour H, Simpson J, Abdolmaleki A, Abyar F. Synthesis, structure, DNA/protein binding, and cytotoxic activity of a rhodium(III) complex with 2,6-bis(2-benzimidazolyl)pyridine. Eur J Med Chem. 2017;127:958–971.
  • Ramana MMV, Betkar R, Nimkar A, Ranade P, Mundhe B, Pardeshi S. Synthesis of a novel 4H-pyran analog as minor groove binder to DNA using ethidium bromide as fluorescence probe. Spectrochim Acta A Mol Biomol Spectrosc. 2016;152:165–171.
  • Chul-Jae TAL, Kang J-S, Lee K-P, Lee M-S. The study of doxorubicin and its complex with DNA by SERS and UV-resonance Raman spectroscopy. Bull Korean Chem Soc. 2004;25:1211–1216.
  • Rao YK, Fang S-H, Tzeng Y-M. Synthesis and biological evaluation of 3α,4α,5α- trimethoxychalcone analogs as inhibitors of nitric oxide production and tumor cell proliferation. Bioorg Med Chem. 2009;17:7909–7914.
  • Rostom SAF, Shalaby M., Subbagh HI. Synthesis and biological evaluation of some polymethoxylated fused pyridine ring systems as antitumor agents. Arch Pharm Chem Life Sci. 2009;342:584–590.
  • Al-Omary FAM, Hassan GS, El-Messery SM, El-Subbagh HI. Substituted thiazoles V. Synthesis and antitumor activity of novel thiazolo[2,3-b]quinazoline and pyrido[4,3- d]thiazolo[3,2-a]pyrimidine analogues. Eur J Med Chem. 2012;47(1):65–72.
  • Nemr MT, AboulMagd AM, Hassan HM, Hamed AA, Hamed MIA, Hassan MI, Elsaadi MT Design, synthesis and mechanistic study of new benzenesulfonamide derivatives as anticancer and antimicrobial agents via carbonic anhydrase IX inhibition. RSC Adv. 2021;11(42):26241–26257.
  • Nemr MTM, Sonousi A, Marzouk AA Design, synthesis and antiproliferative evaluation of new tricyclic fused thiazolopyrimidines targeting topoisomerase II: Molecular docking and apoptosis inducing activity. Bioorg Chem. 2020;105:104446–104455.
  • Nemr MTM, AboulMagd AM. New fused pyrimidine derivatives with anticancer activity: synthesis, topoisomerase II inhibition, apoptotic inducing activity and molecular modeling study. Bioorg Chem. 2020;103:104134.
  • Biginelli P. Aldehyde-urea derivatives of aceto-and oxaloacetic acids. Gazz Chim Ital. 1893;23:360–413.
  • Russowsky D, Lopes FA, da Silva VSS, Canto KFS, Montes D’Oca MG, Godoi MN. Multicomponent Biginelli’s synthesis of 3,4-dihydropyrimidin-2(1h)-ones promoted by SnCl2.2H2O. J Braz Chem Soc. 2004;15(2):165–169.
  • Elmaghraby AM, Mousa IA, Harb AA, Mahgoub MY. Three component reaction: an efficient synthesis and reactions of 3,4-dihydropyrimidin-2(1h)-ones and thiones using new natural catalyst. Hindawi Publishing Corporation, 2013, p. 706437.
  • Dabholkar VV, Badhe K, S; Kurade SK. One-pot solvent free synthesis of dihydropyrimidinones using calcined Mg/Fehydrotalcite catalyst. Curr Chem Letters. 2017;6:77–90.
  • Jadhav CK, Nipate AS, Chate AV, Songire VD, Patil AP, Gill CH. Efficient rapid access to Biginelli for the multicomponent synthesis of 1,2,3,4-tetrahydropyrimidines in room-temperature diisopropyl ethyl ammonium acetate. ACS Omega. 2019;4(27):22313–22324.
  • Thorat BR, Gurav A, Dalvi B, Sawant A, Lokhande V, Mali SN. Green synthesis of substituted dihydropyrimidin-2(1h)-one by using zinc chloride/acetic acid catalytic system. Current Chin Chem. 2021;1:30–46.
  • Hamouda AM. Synthesis of novel pyrimidines thiazolopyrimidines, triazolopyrimidines and pyrimidotriazines as potent antimicrobial agent. Der Pharma Chemica. 2014;6(6):346–357.
  • Salem MAI, Marzouk MI, Salem MS, Alshibanib GA. One-pot synthesis of 1,2,3,4-tetrahydropyrimidin-2(1h)-thione derivatives and their biological activity. J Heterocyclic Chem. 2016;53:545–557.
  • Alzahrani HE, Fouda AM, Youssef AMS. Selective cyclization of S-substituted pyrimidinethione: synthesis and antimicrobial evaluation of novel polysubstituted thiazolopyrimidine and thiazolodipyrimidine derivatives. J Chin Chem Soc. 2020;67:838–855.
  • El-Emary TI, Abdel-Mohsen SA. Synthesis and antimicrobial activity of some new 1,3-diphenylpyrazoles bearing pyrimidin, pyrimidinethione, thiazolopyrimidine, triazolopyrimidine, thio- and alkylthiotriazolop-yrimidinone moieties at the 4-position, phosphorus. Sulfur Silicon. 2006;181:2459–2474.
  • Nagarapu L, Vanaparthi S, Bantu R, Kumar G. Synthesis of novel benzo[4,5]thiazolo[1,2-a]pyrimidine-3-carboxylate derivatives and biological evaluation as potential anticancer agents. Eur J Med Chem. 2013;69:817–822.
  • Klejborowska G, Urbaniak A, Maj E, Preto J, Moshari M, Wietrzyk J, Tuszynski JA, Chambers TC, Huczyński A. Synthesis, biological evaluation and molecular docking studies of new amides of 4-chlorothiocolchicine as anticancer agents. Bioorg Chem. 2020;97:103664–103674.
  • Kumar VK, Puli VS, Prasad KRS, Sridhar G. Design, synthesis and biological evaluation of amide derivatives of oxazol benzofuran-isoxazols as anticancer agents. Chem Data Collect. 2021;36:100787–100793.
  • Sun Y, Song J, Kong L, Sha B, Tian X, Liu X, Hu T, Chen P, Zhang S. Design, synthesis and evaluation of novel bis- substituted aromatic amide dithiocarbamate derivatives as colchicine site tubulin polymerization inhibitors with potent anticancer activities. Eur J Med Chem. 2022;229:114069–114085.
  • Li Y, Liu F, Liu W, Zhang Y, Tian X, Fu X, Xu Y, Song J, Zhang S. A novel aromatic amide derivative SY-65 co-targeted tubulin and histone deacetylase 1 with potent anticancer activity in vitro and in vivo. Biochem Pharmacol. 2022;201:115070–115081.
  • Khan I, Tantray MA, Hamid H, Alam MS, Sharma K, Kesharwani P. Design, synthesis, in vitro antiproliferative evaluation and GSK-3β kinase inhibition of a new series of pyrimidin-4-one based amide conjugates. Bioorg Chem. 2022;119:105512–105526..
  • Raffa D, D'Anneo A, Plescia F, Daidone G, Lauricella M, Maggio B. Novel 4-(3-phenylpropionamido), 4-(2-phenoxyacetamido) and 4- (cinnamamido) substituted benzamides bearing the pyrazole or indazole nucleus: synthesis, biological evaluation and mechanism of action. Bioorg Chem. 2019;83:367–379.
  • Ismail MMF, El-Zahabi HSA, Ibrahim RS, Mehany ABM. Design and synthesis of novel tranilast analogs: Docking, antiproliferative evaluation and in-silico screening of TGFβR1 inhibitors. Bioorg Chem. 2020;105:104368–104381.
  • Abdelhaleem EF, Abdelhameid MK, Kassab AE, Kandeel MM. Design and synthesis of thienopyrimidine urea derivatives with potential cytotoxic and pro-apoptotic activity against breast cancer cell line MCF-7. Eur J Med Chem. 2018;143:1807–1825.
  • Kou F, Sun H, Wu L, Li B, Zhang B, Wang X, Yang L. TOP2A promotes lung adenocarcinoma cells’ malignant progression and predicts poor prognosis in lung adenocarcinoma. J Cancer. 2020;11(9):2496–2508.
  • Shigematsu H, Ozaki S, Yasui D, Yamamoto H, Zaitsu J, Taniyama D, Saitou A, Kuraoka K, Hirata T, Taniyama K. Overexpression of topoisomerase II alpha protein is a factor for poor prognosis in patients with luminal B breast cancer. Oncotarget. 2018;9(42):26701–26710.
  • Wu S, Pan S, Xiao Z, Hsu J, Chen M, Lee K, Teng C. NPRL-Z-1, as a new topoisomerase ii poison: induces cell apoptosis and ros generation in human renal carcinoma cells, PLOS ONE. 2014;9(11):112220–112230.
  • Depowski PL, Rosenthal SI, Brien TP, Stylos S, Johnson RL, Ross JS. Topoisomerase IIa expression in breast cancer:correlation with outcome variables. Mod Pathol. 2000;13(5):542–547.
  • Skok Z, Zidar N, Kikelj D, Ilas J. Dual inhibitors of human DNA topoisomerase ii and other cancerrelated targets. J Med Chem. 2020;63(3):884–904. 
  • Mastrangelo S, Attina G, Triarico S, Romano A, Maurizi P, Ruggiero A. The DNA-topoisomerase inhibitors in cancer therapy. Biomed Pharmacol J. 2022;15(2):553–562.
  • Badisa RB, Darling-Reed SF, Joseph P, Cooperwood JS, Latinwo LM, Goodman CB. Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells. Anticancer Res. 2009;29(8):2993–2996.
  • Farghaly TA, Masaret GS, Muhammad ZA, Harras MF. Discovery of thiazole-based-chalcones and 4-hetarylthiazoles as potent anticancer agents: synthesis, docking study and anticancer activity. Bioorg Chem. 2020;98:103761–103773.
  • El-Shershaby MH, Ghiaty A, Bayoumi AH, Al-Karmalawy AA, Husseiny EM, El-Zoghbi MS, Abulkhair HS. From triazolophthalazines to triazoloquinazolines: a bioisosterism-guided approach toward the identification of novel PCAF inhibitors with potential anticancer activity. Bioorg Med Chem. 2021;42:116266–116281.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64:4–17.
  • Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–2623.
  • Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53(7):2719–2740.
  • Ruth B, Schipani A, James D, Krasowski A, Gilbert IHJ, Frearson P, Wyatt G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. Chem Med Chem. 2008;3:435–444.