1,246
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Antihistamines, phenothiazine-based antipsychotics, and tricyclic antidepressants potently activate pharmacologically relevant human carbonic anhydrase isoforms II and VII

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2188147 | Received 23 Jan 2023, Accepted 01 Mar 2023, Published online: 13 Mar 2023

References

  • Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem. 2016;31(3):345–360.
  • Alterio V, Di Fiore A, D'Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev. 2012;112(8):4421–4468.
  • Supuran CT. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin Drug Discov. 2020;15(6):671–686.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7(2):168–181.
  • Angeli A, Berrino E, Carradori S, Supuran CT, Cirri M, Carta F, Costantino G. Amine- and amino acid-based compounds as carbonic anhydrase activators. Molecules. 2021;26(23):7331.
  • Supuran CT, Altamimi ASA, Carta F. Carbonic anhydrase inhibition and the management of glaucoma: a literature and patent review 2013-2019. Expert Opin Ther Pat. 2019;29(10):781–792.
  • Nocentini A, Donald WA, Supuran CT. Chapter 8 - Human carbonic anhydrases: tissue distribution, physiological role, and druggability. In: Supuran CT and Nocentini A, editors. Carbonic anhydrases: biochemistry and pharmacology of an evergreen pharmaceutical target. Cambridge (MA): Academic Press; 2019. p. 151–185.
  • Ruusuvuori E, Kaila K. Carbonic anhydrases and brain pH in the control of neuronal excitability. Subcell Biochem. 2014;75:271–290.
  • Lee SH, McIntyre D, Honess D, Hulikova A, Pacheco-Torres J, Cerdán S, Swietach P, Harris AL, Griffiths JR. Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. Br J Cancer. 2018;119(5):622–630.
  • Supuran CT. Carbonic anhydrases and metabolism. Metabolites. 2018;8(2):25.
  • Nocentini A, Supuran CT, Capasso C. An overview on the recently discovered iota-carbonic anhydrases. J Enzyme Inhib Med Chem. 2021;36(1):1988–1995.
  • Capasso C. Chapter 5 - δ-Carbonic anhydrases. In: Supuran CT and Nocentini A editors. Carbonic anhydrases: biochemistry and pharmacology of an evergreen pharmaceutical target. Cambridge (MA): Academic Press; 2019. p. 107–129.
  • Capasso C, Supuran CT. An overview of the alpha-, beta- and gamma-carbonic anhydrases from bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem. 2015;30(2):325–332.
  • Nocentini A, Supuran CT. Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opin Drug Discov. 2019;14(11):1175–1197.
  • Ozensoy Guler O, Capasso C, Supuran CT. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization. J Enzyme Inhib Med Chem. 2016;31(5):689–694.
  • D’Ambrosio K, De Simone G, Supuran CT. Chapter 2 - Human carbonic anhydrases: catalytic properties, structural features, and tissue distribution. In: Supuran CT, De Simone G, editors. Carbonic anhydrases as biocatalysts. Amsterdam: Elsevier; 2015.
  • Stams T, Nair SK, Okuyama T, Waheed A, Sly WS, Christianson DW. Crystal structure of the secretory form of membrane-associated human carbonic anhydrase iv at 2.8-Å resolution. Proc Natl Acad Sci U S A. 1996;93(24):13589–13594.
  • Waheed A, Sly WS. Membrane associated carbonic anhydrase IV (CA IV): a personal and historical perspective. Subcell Biochem. 2014;75:157–179.
  • Aspatwar A, Supuran CT, Waheed A, Sly WS, Parkkila S. Mitochondrial carbonic anhydrase va and vb: properties and roles in health and disease. J Physiol. 2023;601(2):257–274.
  • Kivelä J, Parkkila S, Parkkila A-K, Leinonen J, Rajaniemi H. Salivary carbonic anhydrase isoenzyme VI. J Physiol. 1999;520(2):315–320.
  • Ogawa Y, Matsumoto K, Maeda T, Tamai R, Suzuki T, Sasano H, Fernley RT. Characterization of lacrimal gland carbonic anhydrase VI. J Histochem Cytochem. 2002;50(6):821–827.
  • Supuran CT, Alterio V, Di Fiore AD, Ambrosio K, Carta F, Monti SM, De Simone G. Inhibition of carbonic anhydrase ix targets primary tumors, metastases, and cancer stem cells: three for the price of one. Med Res Rev. 2018;38(6):1799–1836.
  • Supuran CT. Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs. 2018;27(12):963–970.
  • Ciccone L, Cerri C, Nencetti S, Orlandini E. Carbonic anhydrase inhibitors and epilepsy: state of the art and future perspectives. Molecules. 2021;26(21):6380.
  • Scozzafava A, Supuran CT, Carta F. Antiobesity carbonic anhydrase inhibitors: a literature and patent review. Expert Opin Ther Pat. 2013;23(6):725–735.
  • Nocentini A, Supuran CT. Carbonic anhydrase inhibitors as antitumor/antimetastatic agents: a patent review (2008–2018). Expert Opin Ther Pat. 2018;28(10):729–740.
  • Boztaş M, Çetinkaya Y, Topal M, Gülçin İ, Menzek A, Şahin E, Tanc M, Supuran CT. Synthesis and carbonic anhydrase isoenzymes I, II, IX, and XII inhibitory effects of dimethoxybromophenol derivatives incorporating cyclopropane moieties. J Med Chem. 2015;58(2):640–650.
  • Halmi P, Parkkila S, Honkaniemi J. Expression of carbonic anhydrases ii, iv, vii, viii and xii in rat brain after kainic acid induced status epilepticus. Neurochem Int. 2006;48(1):24–30.
  • Parkkila S, Parkkila AK, Rajaniemi H, Shah GN, Grubb JH, Waheed A, Sly WS. Expression of membrane-associated carbonic anhydrase XIV on neurons and axons in mouse and human brain. Proc Natl Acad Sci U S A. 2001;98(4):1918–1923.
  • McIntyre A, Patiar S, Wigfield S, Li J-L, Ledaki I, Turley H, Leek R, Snell C, Gatter K, Sly WS, et al. Carbonic anhydrase ix promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin Cancer Res. 2012;18(11):3100–3111.
  • Waheed A, Sly WS. Carbonic anhydrase xii functions in health and disease. Gene. 2017;623(:33–40.
  • Nocentini A, Lucidi A, Perut F, Massa A, Tomaselli D, Gratteri P, Baldini N, Rotili D, Mai A, Supuran CT. Α,γ-diketocarboxylic acids and their esters act as carbonic anhydrase IX and XII selective inhibitors. ACS Med Chem Lett. 2019;10(4):661–665.
  • Ghandour MS, Parkkila AK, Parkkila S, Waheed A, Sly WS. Mitochondrial carbonic anhydrase in the nervous system: expression in neuronal and glial cells. J Neurochem. 2000;75(5):2212–2220.
  • Shah GN, Hewett-Emmett D, Grubb JH, Migas MC, Fleming RE, Waheed A, Sly WS. Mitochondrial carbonic anhydrase ca vb: differences in tissue distribution and pattern of evolution from those of ca va suggest distinct physiological roles. Proc Natl Acad Sci U S A. 2000;97(4):1677–1682.
  • Fujikawa-Adachi K, Nishimori I, Taguchi T, Onishi S. Human mitochondrial carbonic anhydrase VB: cDNA cloning, mRNA expression, subcellular localization, and mapping to chromosome X. J Biol Chem. 1999;274(30):21228–21233.
  • Briganti F, Mangani S, Orioli P, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II with histamine. Biochemistry. 1997;36(34):10384–10392.
  • Supuran CT. Carbonic anhydrase activators. Future Med Chem. 2018;10(5):561–573.
  • Temperini C, Scozzafava A, Vullo D, Supuran CT. Carbonic anhydrase activators. Activation of isozymes I, II, IV, VA, VII, and XIV with l- and d-histidine and crystallographic analysis of their adducts with isoform ii: engineering proton-transfer processes within the active site of an enzyme. Chemistry. 2006;12(27):7057–7066.
  • Temperini C, Scozzafava A, Vullo D, Supuran CT. Carbonic anhydrase activators, activation of isoforms i, II, IV, VA, VII, and XIV with L- and D-phenylalanine and crystallographic analysis of their adducts with isozyme ii: stereospecific recognition within the active site of an enzyme and its consequences for the drug design. J Med Chem. 2006;49(10):3019–3027.
  • Temperini C, Innocenti A, Scozzafava A, Supuran CT. Carbonic anhydrase activators: kinetic and X-ray crystallographic study for the interaction of D- and L-tryptophan with the mammalian isoforms I-XIV. Bioorg Med Chem. 2008;16(18):8373–8378.
  • Temperini C, Innocenti A, Scozzafava A, Mastrolorenzo A, Supuran CT. Carbonic anhydrase activators: L-adrenaline plugs the active site entrance of isozyme II, activating better isoforms I, IV, VA, VII, and XIV. Bioorg Med Chem Lett. 2007;17(3):628–635.
  • Dave K, Ilies MA, Scozzafava A, Temperini C, Vullo D, Supuran CT. An inhibitor-like binding mode of a carbonic anhydrase activator within the active site of isoform II. Bioorg Med Chem Lett. 2011;21(9):2764–2768.
  • Sun MK, Alkon DL. Pharmacological enhancement of synaptic efficacy, spatial learning and memory through carbonic anhydrase activation in rats. J Pharmacol Exp Ther. 2001;23:83–89.
  • Meier-Ruge W, Iwangoff P, Reichlmeier K. Neurochemical enzyme changes in Alzheimer’s and Pick’s disease. Arch Gerontol Geriatr. 1984;3(2):161–165.
  • Canto de Souza L, Provensi G, Vullo D, Carta F, Scozzafava A, Costa A, Schmidt SD, Passani MB, Supuran CT, Blandina P. Carbonic anhydrase activation enhances object recognition memory in mice through phosphorylation of the extracellular signal-regulated kinase in the cortex and the hippocampus. Neuropharmacology. 2017;118:148–156.
  • Giovannini MG, Efoudebe M, Passani MB, Baldi E, Bucherelli C, Giachi F, Corradetti R, Blandina P. Improvement in fear memory by histamine-elicited ERK2 activation in hippocampal CA3 cells. J Neurosci. 2003;23(27):9016–9023.
  • Schmidt SD, Costa A, Rani B, Nachtigall EG, Passani MB, Carta F, Nocentini A, De Carvalho Myskiw J, Furini CRG, Supuran CT, et al. The role of carbonic anhydrases in extinction of contextual fear memory. Proc Natl Acad Sci U S A. 2020;117(27):16000–16008.
  • Sun MK, Alkon DL. Carbonic anhydrase gating of attention: memory therapy and enhancement. Trends Pharmacol Sci. 2002;23(2):83–89.
  • Provensi G, Nocentini A, Passani MB, Blandina P, Supuran CT. Activation of carbonic anhydrase isoforms involved in modulation of emotional memory and cognitive disorders with histamine agonists, antagonists and derivatives. J Enzyme Inhib Med Chem. 2021;36(1):719–726.
  • Angeli A, Vaiano F, Mari F, Bertol E, Supuran CT. Psychoactive substances belonging to the amphetamine class potently activate brain carbonic anhydrase isoforms VA, VB, VII, and XII. J Enzyme Inhib Med Chem. 2017;32(1):1253–1259.
  • Casini A, Caccia S, Scozzafava A, Supuran CT. Carbonic anhydrase activators. The selective serotonin reuptake inhibitors fluoxetine, sertraline and citalopram are strong activators of isozymes I and II. Bioorg Med Chem Lett. 2003;13(16):2765–2768.
  • Abbate F, Coetzee A, Casini A, Ciattini S, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with the antipsychotic drug sulpiride. Bioorg Med Chem Lett. 2004;14(2):337–341.
  • Erzengin M, Bilen C, Ergun A, Gencer N. Antipsychotic agents screened as human carbonic anhydrase I and ii inhibitors. Arch Physiol Biochem. 2014;120(1):29–33.
  • Simons FER. Advances in H1-antihistamines. N Engl J Med. 2004;351(21):2203–2217.
  • Spitzmaul G, Gumilar F, Dilger JP, Bouzat C. The local anaesthetics proadifen and adiphenine inhibit nicotinic receptors by different molecular mechanisms. Br J Pharmacol. 2009;157(5):804–817.
  • Ohlow MJ, Moosmann B. Phenothiazine: the seven lives of pharmacology’s first lead structure. Drug Discov Today. 2011;16(3-4):119–131.
  • Goldenberg H, Fishman V, Heaton A, Burnett R. A detailed evaluation of promazine metabolism. Proc Soc Exp Biol Med. 1964;115:1044–1051.
  • Walkenstein SS, Seifter J. Fate, distribution and excretion of S35 promazine. J Pharmacol Exp Ther. 1959;125(4):283–286.
  • Blackburn T, Wasley J. 6.03 - Affective disorders: depression and bipolar disorders. In: Taylor JB and Triggle DJ editors. Comprehensive Medicinal Chemistry II. Oxford: Elsevier; 2007.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem. 1971;246(8):2561–2573.
  • Vullo D, Nishimori I, Scozzafava A, Supuran CT. Carbonic anhydrase activators: activation of the human cytosolic isozyme iii and membrane-associated isoform IV with amino acids and amines. Bioorg Med Chem Lett. 2008;18(15):4303–4307.
  • Vullo D, Nishimori I, Innocenti A, Scozzafava A, Supuran CT. Carbonic anhydrase activators: an activation study of the human mitochondrial isoforms VA and VB with amino acids and amines. Bioorg Med Chem Lett. 2007;17(5):1336–1340.
  • Parkkila S, Vullo D, Puccetti L, Parkkila AK, Scozzafava A, Supuran CT. Carbonic anhydrase activators: activation of isozyme XIII with amino acids and amines. Bioorg Med Chem Lett. 2006;16(15):3955–3959.
  • Nishimori I, Onishi S, Vullo D, Innocenti A, Scozzafava A, Supuran CT. Carbonic anhydrase activators: the first activation study of the human secretory isoform VI with amino acids and amines. Bioorg Med Chem. 2007;15(15):5351–5357.
  • Pastorekova S, Vullo D, Nishimori I, Scozzafava A, Pastorek J, Supuran CT. Carbonic anhydrase activators: activation of the human tumor-associated isozymes IX and XII with amino acids and amines. Bioorg Med Chem. 2008;16(7):3530–3536.
  • Blandina P, Provensi G, Passsani MB, Capasso C, Supuran CT. Carbonic anhydrase modulation of emotional memory. Implications for the treatment of cognitive disorders. J Enzyme Inhib Med Chem. 2020;35(1):1206–1214.
  • Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol. 2000;20(2):131–147.
  • Sadiq MW, Borgs A, Okura T, Shimomura K, Kato S, Deguchi Y, Jansson B, Bjorkman S, Terasaki T, Hammarlund-Udenaes M. Diphenhydramine active uptake at the blood-brain barrier and its interaction with oxycodone in vitro and in vivo. J Pharm Sci. 2011;100(9):3912–3923.
  • Simons FE, Simons KJ. H1 antihistamines: current status and future directions. World Allergy Organ J. 2008;1(9):145–155.
  • Michelot J, Moreau MF, Veyre A, Labarre P, Meyniel G. Brain uptake of labelled adiphenine in rats. Biopharm Drug Dispos. 1986;7(2):197–206.
  • Michelot J, Moreau MF, Veyre A, Labarre P, Meyniel G. Adiphenine plasma levels and blood-brain barrier crossing in the rat. Eur J Drug Metab Pharmacokinet. 1985;10(4):273–278.
  • Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat M, Kretzschmar ME, Devleesschauwer B, Cecchini M, Burden of AMR Collaborative Group, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the eu and the european economic area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66.
  • Cantisani C, Ricci S, Grieco T, Paolino G, Faina V, Silvestri E, Calvieri S. Topical promethazine side effects: our experience and review of the literature. Biomed Res Int. 2013;2013:151509.
  • Daniel W, Syrek M, Janczar L, Boksa J. The pharmacokinetics of promazine and its metabolites after acute and chronic administration to rats- A comparison with the pharmacokinetics of imipramine. Pol J Pharmacol. 1995;47(2):127–136.
  • Mahju MA, Maickel RP. Accumulation of phenothiazine tranquilizers in rat brain and plasma after repeated dosage. Biochem Pharmacol. 1969;18(12):2701–2710.
  • Alfredsson G, Wiesel F-A, Skett P. Levels of chlorpromazine and its active metabolites in rat brain and the relationship to central monoamine metabolism and prolactin secretion. Psychopharmacology (Berl)). 1977;53(1):13–18.
  • Collard JF, Maggs R. Clinical trial of acepromazine maleate in chronic schizophrenia. Br Med J. 1958;1(5085):1452–1454.
  • Papich MG. Propiopromazine hydrochloride. In: Papich MG editor. Saunders handbook of veterinary drugs 4th ed. St. Louis: W.B. Saunders; 2016.
  • Sallee FR, Pollock BG. Clinical pharmacokinetics of imipramine and desipramine. Clin Pharmacokinet. 1990;18(5):346–364.
  • Hrdina PD, Dubas TC. Brain distribution and kinetics of desipramine in the rat. Can J Physiol Pharmacol. 1981;59(2):163–167.
  • Glotzbach RK, Preskorn SH. Brain concentrations of tricyclic antidepressants: single-dose kinetics and relationship to plasma concentrations in chronically dosed rats. Psychopharmacology (Berl)). 1982;78(1):25–27.
  • Uhr M, Grauer MT, Yassouridis A, Ebinger M. Blood–brain barrier penetration and pharmacokinetics of amitriptyline and its metabolites in P-glycoprotein (ABCB1AB) knock-out mice and controls. J Psychiatr Res. 2007;41(1-2):179–188.
  • Nielsen M, Eplov L, Scheel-Krüger J. Protriptyline induced inhibition of the in vivo 3H-noradrenaline synthesis from 3H-L-dopa in the rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1974;285(1):15–28.
  • Uhr M, Grauer MT, Holsboer F. Differential enhancement of antidepressant penetration into the brain in mice with ABCB1AB (MDR1AB) P-glycoprotein gene disruption. Biol Psychiatry. 2003;54(8):840–846.