875
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Styrylquinazoline derivatives as ABL inhibitors selective for different DFG orientations

, , &
Article: 2201410 | Received 21 Jan 2023, Accepted 04 Apr 2023, Published online: 18 Apr 2023

References

  • Azam M, Seeliger MA, Gray NS, Kuriyan J, Daley GQ. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat Struct Mol Biol. 2008;15(10):1109–1118.
  • Skora L, Mestan J, Fabbro D, Jahnke W, Grzesiek S. Nmr reveals the allosteric opening and closing of abelson tyrosine kinase by atp-site and myristoyl pocket inhibitors. Proc Natl Acad Sci USA. 2013;110(47):E4437–4445.
  • Chen S, Dumitrescu TP, Smithgall TE, Engen JR. Abl n-terminal cap stabilization of sh3 domain dynamics. Biochemistry. 2008;47(21):5795–5803.
  • Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE. Structure and dynamic regulation of abl kinases. J Biol Chem. 2013;288(8):5443–5450.
  • Gray NS, Fabbro D. Discovery of allosteric bcr-abl inhibitors from phenotypic screen to clinical candidate. Methods Enzymol. 2014;548:173–188.
  • Fabbro D, Manley PW, Jahnke W, Liebetanz J, Szyttenholm A, Fendrich G, Strauss A, Zhang J, Gray NS, Adrian F, et al. Inhibitors of the abl kinase directed at either the ATP- or myristate-binding site. Biochim Biophys Acta. 2010;1804(3):454–462.
  • Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, Cowan-Jacob SW, Dodd S, Drueckes P, Fabbro D, Gabriel T, et al. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J Med Chem. 2018;61(18):8120–8135.
  • Cowan-Jacob SW, Fendrich G, Manley PW, Jahnke W, Fabbro D, Liebetanz J, Meyer T. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure. 2005;13(6):861–871.
  • Atwell S, Adams JM, Badger J, Buchanan MD, Feil IK, Froning KJ, Gao X, Hendle J, Keegan K, Leon BC, et al. A novel mode of gleevec binding is revealed by the structure of spleen tyrosine kinase. J Biol Chem. 2004;279(53):55827–55832.
  • Vijayan RS, He P, Modi V, Duong-Ly KC, Ma H, Peterson JR, Dunbrack RL, Jr., Levy RM. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type ii inhibitors. J Med Chem. 2015;58(1):466–479.
  • Hanson SM, Georghiou G, Thakur MK, Miller WT, Rest JS, Chodera JD, Seeliger MA. What makes a kinase promiscuous for inhibitors? Cell Chem Biol. 2019;26(3):390–399 e395.
  • Mularski J, Malarz K, Pacholczyk M, Musiol R. The p53 stabilizing agent CP-31398 and multi-kinase inhibitors. Designing, synthesizing and screening of styrylquinazoline series. Eur J Med Chem. 2019;163:610–625.
  • Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J, Superti-Furga G. A myristoyl/phosphotyrosine switch regulates c-ABL. Cell. 2003;112(6):845–857.
  • McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of bcr is essential for the transforming function of BCR-ABL oncoproteins. Mol Cell Biol. 1993;13(12):7587–7595.
  • Mian AA, Metodieva A, Badura S, Khateb M, Ruimi N, Najajreh Y, Ottmann OG, Mahajna J, Ruthardt M. Allosteric inhibition enhances the efficacy of ABL kinase inhibitors to target unmutated BCR-ABL and BCR-ABL-T315I. BMC Cancer. 2012;12:411.
  • Eide CA, Zabriskie MS, Savage Stevens SL, Antelope O, Vellore NA, Than H, Schultz AR, Clair P, Bowler AD, Pomicter AD, et al. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants. Cancer Cell. 2019;36(4):431–443 e435.
  • Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, Sim T, Powers J, Dierks C, Sun F, et al. Targeting BCR-ABL by combining allosteric with atp-binding-site inhibitors. Nature. 2010;463(7280):501–506.
  • Mrozek-Wilczkiewicz A, Malarz K, Rejmund M, Polanski J, Musiol R. Anticancer activity of the thiosemicarbazones that are based on di-2-pyridine ketone and quinoline moiety. Eur J Med Chem. 2019;171:180–194.
  • Mrozek-Wilczkiewicz A, Kuczak M, Malarz K, Cieślik W, Spaczyńska E, Musiol R. The synthesis and anticancer activity of 2-styrylquinoline derivatives. A p53 independent mechanism of action. Eur J Med Chem. 2019;177:338–349.
  • Mrozek-Wilczkiewicz A, Spaczynska E, Malarz K, Cieslik W, Rams-Baron M, Krystof V, Musiol R. Design, synthesis and in vitro activity of anticancer styrylquinolines. The p53 independent mechanism of action. PLoS One. 2015;10(11):e0142678.
  • Jampilek J, Musiol R, Finster J, Pesko M, Carroll J, Kralova K, Vejsova M, O'Mahony J, Coffey A, Dohnal J, et al. Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules. 2009;14(10):4246–4265.
  • Malarz K, Mularski J, Kuczak M, Mrozek-Wilczkiewicz A, Musiol R. Novel benzenesulfonate scaffolds with a high anticancer activity and g2/m cell cycle arrest. Cancers (Basel). 2021;13(8):1790.
  • Lewis AK, Dunleavy KM, Senkow TL, Her C, Horn BT, Jersett MA, Mahling R, Mccarthy MR, Perell GT, Valley CC, et al. Oxidation increases the strength of the methionine-aromatic interaction. Nat Chem Biol. 2016;12(10):860–866.
  • Kim SH, Bajji A, Tangallapally R, Markovitz B, Trovato R, Shenderovich M, Baichwal V, Bartel P, Cimbora D, McKinnon R, et al. Discovery of (2s)-1-[4-(2-6-amino-8-[(6-bromo-1,3-benzodioxol-5-yl)sulfanyl]-9h-purin-9-ylethyl)piperidin-1-yl]-2-hydroxypropan-1-one (mpc-3100), a purine-based hsp90 inhibitor. J Med Chem. 2012;55(17):7480–7501.
  • Geoghegan K, Smullen S, Evans P. Halonium ion triggered rearrangement of unsaturated benzo-annulated bi- and tricyclic sulfonamides. J Org Chem. 2013;78(20):10443–10451.
  • Bellale EV, Chaudhari MK, Akamanchi KG. A simple, fast and chemoselective method for the preparation of arylthiols. Synthesis-Stuttgart. 2009;2009(19):3211–3213.
  • Badwan A. Benzene sulfonamides as pde-v inhibitors for the use against erectile dysfunction. In: Benzene sulfonamides as pde-v inhibitors for the use against erectile dysfunction. Omm Al-Amad: Jordanian Pharmaceutical Manufacturing and Medical Equipment Co.; 2000.
  • Bardelle C, Cross D, Davenport S, Kettle JG, Ko EJ, Leach AG, Mortlock A, Read J, Roberts NJ, Robins P, et al. Inhibitors of the tyrosine kinase EphB4. Part 1: structure-based design and optimization of a series of 2,4-bis-anilinopyrimidines. Bioorg Med Chem Lett. 2008;18(9):2776–2780.
  • Youssif BGM, Gouda AM, Moustafa AH, Abdelhamid AA, Gomaa HAM, Kamal I, Marzouk AA. Design and synthesis of new triarylimidazole derivatives as dual inhibitors of BRAFv600e/p38α with potential antiproliferative activity. J Mol Struct . 2022;1253:132218.
  • Xie T, Saleh T, Rossi P, Kalodimos CG. Conformational states dynamically populated by a kinase determine its function. Science. 2020;370(6513):eabc2754.
  • Laurini E, Posocco P, Fermeglia M, Gibbons DL, Quintas-Cardama A, Pricl S. Through the open door: preferential binding of dasatinib to the active form of BCR-ABL unveiled by in silico experiments. Mol Oncol. 2013;7(5):968–975.
  • Grzesiek S, Paladini J, Habazettl J, Sonti R. Imatinib disassembles the regulatory core of abelson kinase by binding to its atp site and not by binding to its myristoyl pocket. Magn Reson. 2022;3(1):91–99.
  • Johnson TK, Bochar DA, Vandecan NM, Furtado J, Agius MP, Phadke S, Soellner MB. Synergy and antagonism between allosteric and active-site inhibitors of ABL tyrosine kinase. Angew Chem Int Ed Engl. 2021;60(37):20196–20199.
  • Vogtherr M, Saxena K, Hoelder S, Grimme S, Betz M, Schieborr U, Pescatore B, Robin M, Delarbre L, Langer T, et al. Nmr characterization of kinase p38 dynamics in free and ligand-bound forms. Angew Chem Int Ed Engl. 2006;45(6):993–997.
  • Niedbała M, Malarz K, Sharma G, Kramer-Marek G, Kaspera W. Glioblastoma: pitfalls and opportunities of immunotherapeutic combinations. Onco Targets Ther. 2022;15:437–468.
  • Malarz K, Mularski J, Pacholczyk M, Musiol R. The landscape of the anti-kinase activity of the IDH1 inhibitors. Cancers. 2020;12(3):536.
  • Amarante-Mendes GP, Rana A, Datoguia TS, Hamerschlak N, Brumatti G. BCR-ABL1 tyrosine kinase complex signaling transduction: challenges to overcome resistance in chronic myeloid leukemia. Pharmaceutics. 2022;14(1):215.
  • Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13(3):217–236.
  • Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. Tp53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26(15):2157–2165.
  • Morotti A, Carra G, Crivellaro S. The p53 orbit in chronic myeloid leukemia: time to move to patient care. Transl Cancer Res. 2016;5(S6):S1288–S1291.
  • Udden SM, Morita-Fujimura Y, Satake M, Ikawa S. c-ABL tyrosine kinase modulates p53-dependent p21 induction and ensuing cell fate decision in response to DNA damage. Cell Signal. 2014;26(2):444–452.
  • Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F, Fujii S, Arlinghaus RB, Czerniak BA, Sen S. Phosphorylation by aurora kinase a induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet. 2004;36(1):55–62.
  • Furlan A, Stagni V, Hussain A, Richelme S, Conti F, Prodosmo A, Destro A, Roncalli M, Barila D, Maina F. ABL interconnects oncogenic met and p53 core pathways in cancer cells. Cell Death Differ. 2011;18(10):1608–1616.
  • Wendel H-G, de Stanchina E, Cepero E, Ray S, Emig M, Fridman JS, Veach DR, Bornmann WG, Clarkson B, McCombie WR, et al. Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc Natl Acad Sci U S A. 2006;103(19):7444–7449.
  • Thottassery JV, Westbrook L, Someya H, Parker WB. C-abl-independent p73 stabilization during gemcitabine- or 4'-thio-beta-d-arabinofuranosylcytosine-induced apoptosis in wild-type and p53-null colorectal cancer cells. Mol Cancer Ther. 2006;5(2):400–410.
  • Higuchi M, Ishiyama K, Maruoka M, Kanamori R, Takaori-Kondo A, Watanabe N. Paradoxical activation of c-Src as a drug-resistant mechanism. Cell Rep. 2021;34(12):108876.
  • Eifert C, Wang X, Kokabee L, Kourtidis A, Jain R, Gerdes MJ, Conklin DS. A novel isoform of the B cell tyrosine kinase BTK protects breast cancer cells from apoptosis. Genes Chromosomes Cancer. 2013;52(10):961–975.
  • Colicelli J. ABL tyrosine kinases: evolution of function, regulation, and specificity. Sci Signal. 2010;3(139):re6.
  • Mauro MJ. Defining and managing imatinib resistance. Hematol Am Soc Hematol Educ Program. 2006;2006(1):219–225.
  • Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and bcr-abl in cell cycle progression and leukemogenesis. Leukemia. 2004;18(2):189–218.
  • Deming PB, Schafer ZT, Tashker JS, Potts MB, Deshmukh M, Kornbluth S. BCR-ABL-mediated protection from apoptosis downstream of mitochondrial cytochrome c release. Mol Cell Biol. 2004;24(23):10289–10299.
  • Hantschel O, Superti-Furga G. Regulation of the c-ABL and BCR-ABL tyrosine kinases. Nat Rev Mol Cell Biol. 2004;5(1):33–44.
  • Whang YE, Tran C, Henderson C, Syljuasen RG, Rozengurt N, McBride WH, Sawyers CL. c-ABL is required for development and optimal cell proliferation in the context of p53 deficiency. Proc Natl Acad Sci U S A. 2000;97(10):5486–5491.
  • Jonuleit T, Peschel C, Schwab R, van der Kuip H, Buchdunger E, Fischer T, Huber C, Aulitzky WE. BCR-ABL kinase promotes cell cycle entry of primary myeloid cml cells in the absence of growth factors. Br J Haematol. 1998;100(2):295–303.
  • Skorski T. BCR/ABL regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability. Oncogene. 2002;21(56):8591–8604.
  • Slupianek A, Hoser G, Majsterek I, Bronisz A, Malecki M, Blasiak J, Fishel R, Skorski T. Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of g(2)/m phase, and protection from apoptosis. Mol Cell Biol. 2002;22(12):4189–4201.
  • Jia L, Wang R, Tang DD. Abl regulates smooth muscle cell proliferation by modulating actin dynamics and ERK1/2 activation. Am J Physiol Cell Physiol. 2012;302(7):C1026–1034.
  • Zhang H, Yi J, Yoon D, Ryoo Z, Lee I, Kim M. Imatinib and GNF-5 exhibit an inhibitory effect on growth of hepatocellar carcinoma cells by downregulating s-phase kinase-associated protein 2. J Cancer Prev. 2020;25(4):252–257.
  • Sirvent A, Boureux A, Simon V, Leroy C, Roche S. The tyrosine kinase abl is required for src-transforming activity in mouse fibroblasts and human breast cancer cells. Oncogene. 2007;26(52):7313–7323.
  • Siu KT, Rosner MR, Minella AC. An integrated view of cyclin e function and regulation. Cell Cycle. 2012;11(1):57–64.
  • Gurzov EN, Izquierdo M. Cyclin E1 knockdown induces apoptosis in cancer cells. Neurol Res. 2006;28(5):493–499.
  • Mazumder S, DuPree EL, Almasan A. A dual role of cyclin E in cell proliferation and apoptosis may provide a target for cancer therapy. Curr Cancer Drug Targets. 2004;4(1):65–75.
  • Xu X, Nakano T, Wick S, Dubay M, Brizuela L. Mechanism of CDK2/cyclin E inhibition by p27 and p27 phosphorylation. Biochemistry. 1999;38(27):8713–8722.
  • Tomoda K, Kato JY, Tatsumi E, Takahashi T, Matsuo Y, Yoneda-Kato N. The JAB1/COP9 signalosome subcomplex is a downstream mediator of BCR-ABL kinase activity and facilitates cell-cycle progression. Blood. 2005;105(2):775–783.
  • Mrozek-Wilczkiewicz A, Malarz K, Rams-Baron M, Serda M, Bauer D, Montforts FP, Ratuszna A, Burley T, Polanski J, Musiol R. Iron chelators and exogenic photosensitizers. Synergy through oxidative stress gene expression. J Cancer. 2017;8(11):1979–1987.
  • Chou TC. Drug combination studies and their synergy quantification using the chou-talalay method. Cancer Res. 2010;70(2):440–446.
  • Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 2006;58(3):621–681.