1,384
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Synthesis and biological evaluation of C-4 substituted phenoxazine-bearing hydroxamic acids with potent class II histone deacetylase inhibitory activities

, , , , , , , , , , & show all
Article: 2212326 | Received 23 Jan 2023, Accepted 05 May 2023, Published online: 16 May 2023

References

  • Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S. The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med). 2018;5:61.
  • 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2020;16(3):391–460.
  • Burns A, Iliffe S. Alzheimer’s disease. BMJ. 2009;338:b158.
  • Tagliapietra M. Aducanumab for the treatment of alzheimer’s disease. Drugs Today. 2022;58(10):465–477.
  • Leon R, Garcia AG, Marco-Contelles J. Recent advances in the multitarget-directed ligands approach for the treatment of alzheimer’s disease. Med Res Rev. 2013;33(1):139–189.
  • Yamakawa H, Cheng J, Penney J, Gao F, Rueda R, Wang J, Yamakawa S, Kritskiy O, Gjoneska E, Tsai LH. The transcription factor sp3 cooperates with HDAC2 to regulate synaptic function and plasticity in neurons. Cell Rep. 2017;20(6):1319–1334.
  • Li JL, Chen JM, Ricupero CL, Hart RP, Schwartz MS, Kusnecov A, Herrup K. Nuclear accumulation of HDAC4 in atm deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med. 2012;18(5):783–790.
  • Tseng JH, Xie L, Song S, Xie YM, Allen L, Ajit D, Hong JS, Chen X, Meeker RB, Cohen TJ. The deacetylase HDAC6 mediates endogenous neuritic tau pathology. Cell Rep. 2017;20(9):2169–2183.
  • Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schluter OM, Bradke F, Lu JR, Fischer A. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for alzheimer’s disease. EMBO Mol Med. 2013;5(1):52–63.
  • Ballatore C, Brunden KR, Trojanowski JQ, Lee VMY, Smith AB, Huryn DM. Modulation of protein-protein interactions as a therapeutic strategy for the treatment of neurodegenerative tauopathies. Curr Top Med Chem. 2011;11(3):317–330.
  • Foglietti C, Filocamo G, Cundari E, De Rinaldis E, Lahm A, Cortese R, Steinkuhler C. Dissecting the biological functions of drosophila histone deacetylases by RNA interference and transcriptional profiling. J Biol Chem. 2006;281(26):17968–17976.
  • Mazzocchi M, Goulding SR, Morales-Prieto N, Foley T, Collins LM, Sullivan AM, O'Keeffe GW. Peripheral administration of the class-IIa HDAC inhibitor mc1568 partially protects against nigrostriatal neurodegeneration in the striatal 6-ohda rat model of parkinson’s disease. Brain Behav Immun. 2022;102:151–160.
  • Tang BL. Class II HDACs and neuronal regeneration. J Cell Biochem. 2014;115(7):1225–1233.
  • Anderson KW, Chen JJ, Wang MY, Mast N, Pikuleva IA, Turko IV. Quantification of histone deacetylase isoforms in human frontal cortex, human retina, and mouse brain. PLOS One. 2015;10(5):e0126592.
  • Margariti A, Zampetaki A, Xiao QZ, Zhou BD, Karamariti E, Martin D, Yin XK, Mayr M, Li HL, Zhang ZY, et al. Histone deacetylase 7 controls endothelial cell growth through modulation of beta-catenin. Circ Res. 2010;106(7):1202–1211.
  • Vallee A, Lecarpentier Y. Alzheimer disease: crosstalk between the canonical wnt/beta-catenin pathway and ppars alpha and gamma. Front Neurosci. 2016;10:459.
  • Aizawa S, Teramoto K, Yamamuro Y. Histone deacetylase 9 as a negative regulator for choline acetyltransferase gene in ng108-15 neuronal cells. Neurosci. 2012;205:63–72.
  • Yu CW, Chang PT, Hsin LW, Chern JW. Quinazolin-4-one derivatives as selective histone deacetylase-6 inhibitors for the treatment of alzheimer’s disease. J Med Chem. 2013;56(17):6775–6791.
  • Ding H, Dolan PJ, Johnson GV. Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem. 2008;106(5):2119–2130.
  • Yang SS, Zhang R, Wang G, Zhang YF. The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer’s disease. Transl Neurodegener. 2017;6:19.
  • Sung YM, Lee T, Yoon H, DiBattista AM, Song JM, Sohn Y, Moffat EI, Turner RS, Jung M, Kim J, et al. Mercaptoacetamide-based class II HDAC inhibitor lowers abeta levels and improves learning and memory in a mouse model of Alzheimer’s disease. Exp Neurol. 2013;239:192–201.
  • Hsu KC, Chu JC, Tseng HJ, Liu CI, Wang HC, Lin TE, Lee HS, Hsin LW, Wang AHJ, Lin CH, et al. Synthesis and biological evaluation of phenothiazine derivative-containing hydroxamic acids as potent class ii histone deacetylase inhibitors. Eur J Med Chem. 2021;219:113419.
  • Thimmaiah KN, Horton JK, Seshadri R, Israel M, Houghton JA, Harwood FC, Houghton PJ. Synthesis and chemical characterization of n-substituted phenoxazines directed toward reversing vinca alkaloid resistance in multidrug-resistant cancer-cells. J Med Chem. 1992;35(18):3358–3364.
  • Hernandez-Olmos V, Abdelrahman A, El-Tayeb A, Freudendahl D, Weinhausen S, Muller CE. N-substituted phenoxazine and acridone derivatives: Structure-activity relationships of potent p2x4 receptor antagonists. J Med Chem. 2012;55(22):9576–9588.
  • Behl C, Moosmann B. Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds. Biol Chem. 2002;383(3-4):521–536.
  • Hajieva P, Mocko JB, Moosmann B, Behl C. Novel imine antioxidants at low nanomolar concentrations protect dopaminergic cells from oxidative neurotoxicity. J Neurochem. 2009;110(1):118–132.
  • Yue K, Sun S, Jia G, Qin M, Hou X, Chou CJ, Huang C, Li X. First-in-class hydrazide-based hdac6 selective inhibitor with potent oral anti-inflammatory activity by attenuating nlrp3 inflammasome activation. J Med Chem. 2022;65(18):12140–12162.
  • Chao SW, Chen LC, Yu CC, Liu CY, Lin TE, Guh JH, Wang CY, Chen CY, Hsu KC, Huang WJ. Discovery of aliphatic-chain hydroxamates containing indole derivatives with potent class I histone deacetylase inhibitory activities. Eur J Med Chem. 2018;143:792–805.
  • Chen LC, Tseng HJ, Liu CY, Huang YY, Yen CC, Weng JR, Lu YL, Hou WC, Lin TE, Pan IH, et al. Design of diarylheptanoid derivatives as dual inhibitors against class IIa histone deacetylase and beta-amyloid aggregation. Front Pharmacol. 2018;9:708.
  • Nepali K, Chang TY, Lai MJ, Hsu KC, Yen Y, Lin TE, Lee SB, Liou JP. Purine/purine isoster based scaffolds as new derivatives of benzamide class of HDAC inhibitors. Eur J Med Chem. 2020;196:112291.
  • LeadIT v2.3.2, 2019. Sankt Augustin, Germany: BiosolveIT GmBH. Available from http://www.biosolveit.de/LeadIT.
  • Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Di Costanzo L, Christie C, Dalenberg K, Duarte JM, Dutta S, et al. RCSB protein data bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019;47(D1):D464–D474.
  • The PyMOL Molecular Graphics System, Version 2.2.1, Schrödinger, LLC.
  • Moritomo A, Yamada H, Watanabe T, Itahana H, Koga Y, Akuzawa S, Okada M. Synthesis and structure-activity relationships of new carbonyl guanidine derivatives as novel dual 5-ht2b and 5-ht7 receptor antagonists. Part 2. Bioorg Med Chem. 2014;22(15):4323–4337.
  • Eastmond GC, Gilchrist TL, Paprotny J, Steiner A. Cyano-activated fluoro displacement reactions in the synthesis of cyanophenoxazines and related compounds. New J Chem. 2001;25(3):385–390.
  • Wu CC, Lee PT, Kao TJ, Chou SY, Su RY, Lee YC, Yeh SH, Liou JP, Hsu TI, Su TP, et al. Upregulation of znf179 acetylation by saha protects cells against oxidative stress. Redox Biol. 2018;19:74–80.
  • Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science. 2010;328(5979):753–756.
  • Benito E, Urbanke H, Ramachandran B, Barth J, Halder R, Awasthi A, Jain G, Capece V, Burkhardt S, Navarro-Sala M, et al. HDAC inhibitor-dependent transcriptome and memory reinstatement in cognitive decline models. J Clin Invest. 2015;125(9):3572–3584.
  • Skultetyova L, Ustinova K, Kutil Z, Novakova Z, Pavlicek J, Mikesova J, Trapl D, Baranova P, Havlinova B, Hubalek M, et al. Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci Rep. 2017;7(1):11547.
  • Wang X, Zhou Y, Gao Q, Ping D, Wang Y, Wu W, Lin X, Fang Y, Zhang J, Shao A. The role of exosomal micrornas and oxidative stress in neurodegenerative diseases. Oxid Med Cell Longev. 2020;2020:3232869.
  • Klein JA, Ackerman SL. Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest. 2003;111(6):785–793.
  • Feng F, Daw JN, Chen QM. Histone deacetylase inhibitors prevent H2O2 from inducing stress granule formation. Curr Res Toxicol. 2020;1:141–148.