1,634
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recombinant ferritins for multimodal nanomedicine

, , , , &
Article: 2219868 | Received 24 Apr 2023, Accepted 25 May 2023, Published online: 01 Jun 2023

References

  • Zhang N, Yu XQ, Xie JX, Xu HM. New insights into the role of ferritin in iron homeostasis and neurodegenerative diseases. Mol Neurobiol. 2021;58(6):2812–2823.
  • Zang JC, Chen H, Zhao GH, Wang FD, Ren FZ. Ferritin cage for encapsulation and delivery of bioactive nutrients: from structure, property to applications. Crit Rev Food Sci Nutr. 2017;57(17):3673–3683.
  • Adameyko KI, Burakov AV, Finoshin AD, Mikhailov KV, Kravchuk OI, Kozlova OS, Gornostaev NG, Cherkasov AV, Erokhov PA, Indeykina MI, et al. Conservative and atypical ferritins of sponges. IJMS. 2021;22(16):8635.
  • Zhen ZP, Tang W, Todd T, Xie J. Ferritins as nanoplatforms for imaging and drug delivery. Expert Opin Drug Deliv. 2014;11(12):1913–1922.
  • Garcia-Casal MN, Pasricha SR, Martinez RX, Lopez-Perez L, Pena-Rosas JP, Cochrane Tobacco Addiction Group. Serum or plasma ferritin concentration as an index of iron deficiency and overload. Cochrane Database Syst Rev. 2021;2021(5):CD011817.
  • Ueda N, Takasawa K. Impact of inflammation on ferritin, hepcidin and the management of iron deficiency anemia in chronic kidney disease. Nutrients. 2018;10(9):1173.
  • Mahroum N, Alghory A, Kiyak Z, Alwani A, Seida R, Alrais M, Shoenfeld Y. Ferritin-from iron, through inflammation and autoimmunity, to COVID-19. Journal of Autoimmunity. 2022;126:102778.
  • Sun Q, Yang F, Wang H, Cui F, Li Y, Li S, Ren Y, Lan W, Li M, Zhu W, et al. Elevated serum ferritin level as a predictor of reduced survival in patients with sporadic amyotrophic lateral sclerosis in China: a retrospective study. Amyotroph Lateral Scler Frontotemporal Degener. 2019;20(3-4):186–191.
  • Gossard TR, Trotti LM, Videnovic A, St Louis EK. Restless legs syndrome: contemporary diagnosis and treatment. Neurotherapeutics. 2021;18(1):140–155.
  • Devos D, Cabantchik ZI, Moreau C, Danel V, Mahoney-Sanchez L, Bouchaoui H, Gouel F, Rolland A-S, Duce JA, Devedjian J-C, et al. Conservative iron chelation for neurodegenerative diseases such as Parkinson’s disease and amyotrophic lateral sclerosis. J Neural Transm. 2020;127(2):189–203.
  • Demchuk AM, Patel TR. The biomedical and bioengineering potential of protein nanocompartments. Biotechnol Adv. 2020;41:107547.
  • Rodrigues MQ, Alves PM, Roldao A. Functionalizing ferritin nanoparticles for vaccine development. Pharmaceutics. 2021;13(10):1621.
  • Kim Y-I, Kim D, Yu K-M, Seo HD, Lee S-A, Casel MAB, Jang S-G, Kim S, Jung WRam, Lai C-J, et al. Development of spike receptor-binding domain nanoparticles as a vaccine candidate against SARS-CoV-2 infection in ferrets. Mbio. 2021;12(2):e00230–21.
  • Xu XL, Tian KW, Lou XF, Du YZ. Potential of ferritin-based platforms for tumor immunotherapy. Molecules. 2022;27(9):2716.
  • Shepherd BO, Chang D, Vasan S, Ake J, Modjarrad K. HIV and SARS-CoV-2: tracing a path of vaccine research and development. Curr HIV/AIDS Rep. 2022;19(1):86–93.
  • Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev. 2021;170:71–82.
  • Palombarini F, Di Fabio E, Boffi A, Macone A, Bonamore A. Ferritin nanocages for protein delivery to tumor cells. Molecules. 2020;25(4):825.
  • Huang X, Chisholm J, Zhuang J, Xiao Y, Duncan G, Chen X, Suk JS, Hanes J. Protein nanocages that penetrate airway mucus and tumor tissue. Proc Natl Acad Sci USA. 2017;114(32):E6595–E6602.
  • Ghandehari H, Chan H-K, Harashima H, MacKay JA, Minko T, Schenke-Layland K, Shen Y, Vicent MJ. Advanced drug delivery 2020-Parts 1,2 and 3 Preface. Adv Drug Deliv Rev. 2020;156:1–2.
  • Jiang B, Zhang R, Zhang J, Hou Y, Chen X, Zhou M, Tian X, Hao C, Fan K, Yan X, et al. GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy. Theranostics. 2019;9(8):2167–2182.
  • Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y, Xu X, Liang M, Jiang B, Yan X, et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun. 2018;9(1):1440.
  • Sun XR, Hong YL, Gong YB, Zheng SS, Xie DH. Bioengineered ferritin nanocarriers for cancer therapy. IJMS. 2021;22(13):7023.
  • Houser KV, Chen GL, Carter C, Crank MC, Nguyen TA, Burgos Florez MC, Berkowitz NM, Mendoza F, Hendel CS, Gordon IJ, et al. Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nat Med. 2022;28(2):383–391.
  • Powell AE, Zhang K, Sanyal M, Tang S, Weidenbacher PA, Li S, Pham TD, Pak JE, Chiu W, Kim PS, et al. A single immunization with spike-functionalized ferritin vaccines elicits neutralizing antibody responses against SARS-CoV-2 in mice. ACS Cent Sci. 2021;7(1):183–199.
  • Lai C-Y, To A, Wong TAS, et al. Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HT adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. bioRxiv. 2021
  • Swanson KA, Rainho-Tomko JN, Williams ZP, Lanza L, Peredelchuk M, Kishko M, Pavot V, Alamares-Sapuay J, Adhikarla H, Gupta S, et al. A respiratory syncytial virus (RSV) F protein nanoparticle vaccine focuses antibody responses to a conserved neutralization domain. Sci Immunol. 2020;5(47):eaba6466.
  • Kanekiyo M, Bu W, Joyce MG, Meng G, Whittle JRR, Baxa U, Yamamoto T, Narpala S, Todd J-P, Rao SS, et al. Rational design of an epstein-barr virus vaccine targeting the receptor-binding site. Cell. 2015;162(5):1090–1100.
  • Kanekiyo M, Wei C-J, Yassine HM, McTamney PM, Boyington JC, Whittle JRR, Rao SS, Kong W-P, Wang L, Nabel GJ, et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature. 2013;499(7456):102–106.
  • Georgiev IS, Joyce MG, Chen RE, Leung K, McKee K, Druz A, Van Galen JG, Kanekiyo M, Tsybovsky Y, Yang ES, et al. Two-component ferritin nanoparticles for multimerization of diverse trimeric antigens. ACS Infect Dis. 2018;4(5):788–796.
  • von Hoven G, Rivas AJ, Neukirch C, Klein S, Hamm C, Qin Q, Meyenburg M, Füser S, Saftig P, Hellmann N, et al. Dissecting the role of ADAM10 as a mediator of Staphylococcus aureus alpha-toxin action. Biochem J. 2016;473(13):1929–1940.
  • Wei J, Cheng X, Zhang Y, Gao C, Wang Y, Peng Q, Luo P, Yang L, Zou Q, Zeng H, et al. Identification and application of a neutralizing epitope within alpha-hemolysin using human serum antibodies elicited by vaccination. Mol Immunol. 2021;135:45–52.
  • Wang W, Zhou X, Bian Y, Wang S, Chai Q, Guo Z, Wang Z, Zhu P, Peng H, Yan X, et al. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nat Nanotechnol. 2020;15(5):406–416.
  • Qu Z, Guo Y, Li M, Cao C, Wang J, Gao M. Recombinant ferritin nanoparticles can induce dendritic cell maturation through TLR4/NF-kappaB pathway. Biotechnol Lett. 2020;42(12):2489–2500.
  • Wang Z, Xu L, Yu H, Lv P, Lei Z, Zeng Y, Liu G, Cheng T. Ferritin nanocage-based antigen delivery nanoplatforms: epitope engineering for peptide vaccine design. Biomater Sci. 2019;7(5):1794–1800.
  • Zhang B, Chao CW, Tsybovsky Y, Abiona OM, Hutchinson GB, Moliva JI, Olia AS, Pegu A, Phung E, Stewart-Jones GBE, et al. A platform incorporating trimeric antigens into self-assembling nanoparticles reveals SARS-CoV-2-spike nanoparticles to elicit substantially higher neutralizing responses than spike alone. Sci Rep. 2020;10(1):18149.
  • Souza PFN, Amaral JL, Bezerra LP, Lopes FES, Freire VN, Oliveira JTA, Freitas CDT. ACE2-derived peptides interact with the RBD domain of SARS-CoV-2 spike glycoprotein, disrupting the interaction with the human ACE2 receptor. J Biomol Struct Dyn. 2022;40(12):5493–5506.
  • Kalathiya U, Padariya M, Fahraeus R, Chakraborti S, Hupp TR. Multivalent display of SARS-CoV-2 Spike (RBD Domain) of COVID-19 to nanomaterial, protein ferritin nanocages. Biomolecules. 2021;11(2):297.
  • Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292.e6.
  • Wang B, Li S, Qiao Y, Fu Y, Nie J, Jiang S, Yao X, Pan Y, Zhao L, Wu C, et al. Self-assembling ferritin nanoparticles coupled with linear sequences from canine distemper virus haemagglutinin protein elicit robust immune responses. J Nanobiotechnol. 2022;20(1):32.
  • Attarilar S, Yang J, Ebrahimi M, Wang Q, Liu J, Tang Y, Yang J. The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective. Front Bioeng Biotechnol. 2020;8:822.
  • Kelly HG, Tan H-X, Juno JA, Esterbauer R, Ju Y, Jiang W, Wimmer VC, Duckworth BC, Groom JR, Caruso F, et al. Self-assembling influenza nanoparticle vaccines drive extended germinal center activity and memory B cell maturation. Jci Insight. 2020;5(10):e136653.
  • Zhang XD, Chen XK, Zhao YL. Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 2022;14(1):95.
  • Liang MM, Yan XY. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–2200.
  • Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–583.
  • Zhu XH, Du JX, Zhu D, Ren SZ, Chen K, Zhu HL. Recent Research on Methods to Improve Tumor Hypoxia Environment. Oxid Med Cell Longevity . 2020;2020:1–18.
  • Candelaria PV, Leoh LS, Penichet ML, Daniels-Wells TR. Antibodies Targeting the Transferrin Receptor 1 (TfR1) as direct anti-cancer agents. Front Immunol. 2021;12:607692.
  • Hestericova M, Heinisch T, Lenz M, Ward TR. Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase. Dalton Trans. 2018;47(32):10837–10841.
  • Zhang L, Laug L, Münchgesang W, Pippel E, Gösele U, Brandsch M, Knez M. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett. 2010;10(1):219–223.
  • Wang T, He J, Duan D, Jiang B, Wang P, Fan K, Liang M, Yan X. Bioengineered magnetoferritin nanozymes for pathological identification of high-risk and ruptured atherosclerotic plaques in humans. Nano Res. 2019;12(4):863–868.
  • Kasyutich O, Ilari A, Fiorillo A, Tatchev D, Hoell A, Ceci P. Silver ion incorporation and nanoparticle formation inside the cavity of pyrococcus furiosus ferritin: structural and size-distribution analyses. J Am Chem Soc. 2010;132(10):3621–3627.
  • Peskova M, Ilkovics L, Hynek D, Dostalova S, Sanchez-Carnerero EM, Remes M, Heger Z, Pekarik V. Detergent-modified catalytic and enzymomimetic activity of silver and palladium nanoparticles biotemplated by Pyrococcus furiosus ferritin. J Colloid Interface Sci. 2019;537:20–27.
  • Foglizzo V, Marchio S. Nanoparticles as physically- and biochemically-tuned drug formulations for cancers therapy. Cancers. 2022;14(10):2473.
  • Kang C, Sun Y, Zhu J, Li W, Zhang A, Kuang T, Xie J, Yang Z. Delivery of nanoparticles for treatment of brain tumor. Curr Drug Metab. 2016;17(8):745–754.
  • Bhushan B, Kumar SU, Matai I, Sachdev A, Dubey P, Gopinath P. Ferritin nanocages: a novel platform for biomedical applications. J Biomed Nanotechnol. 2014;10(10):2950–2976.
  • Alkhateeb AA, Connor JR. The significance of ferritin in cancer: anti-oxidation, inflammation and tumorigenesis. Biochim Biophys Acta. 2013;1836(2):245–254.
  • Li L, Fang CJ, Ryan JC, Niemi EC, Lebrón JA, Björkman PJ, Arase H, Torti FM, Torti SV, Nakamura MC, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci U S A. 2010;107(8):3505–3510.
  • Chen H, Tan X, Han X, Ma L, Dai H, Fu Y, Zhang Y. Ferritin nanocage based delivery vehicles: from single-, co- to compartmentalized- encapsulation of bioactive or nutraceutical compounds. Biotechnol Adv. 2022;61:108037.
  • Waller LP, Deshpande V, Pyrsopoulos N. Hepatocellular carcinoma: a comprehensive review. World J Hepatol. 2015;7(26):2648–2663.
  • Yao X, Liu H, Zhang X, Zhang L, Li X, Wang C, Sun S. Cell Surface GRP78 Accelerated Breast Cancer Cell Proliferation and Migration by Activating STAT3. Plos One. 2015;10(5):e0125634.
  • Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan X. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci U S A. 2014;111(41):14900–14905.
  • Macone A, Masciarelli S, Palombarini F, Quaglio D, Boffi A, Trabuco MC, Baiocco P, Fazi F, Bonamore A. Ferritin nanovehicle for targeted delivery of cytochrome C to cancer cells. Sci Rep. 2019;9(1):11749
  • Wang C, Wang X, Zhang W, Ma D, Li F, Jia R, Shi M, Wang Y, Ma G, Wei W, et al. Shielding Ferritin with a Biomineralized Shell Enables Efficient Modulation of Tumor Microenvironment and Targeted Delivery of Diverse Therapeutic Agents. Adv Mater . 2022;34(5):2107150.
  • Kurtzberg LS, Roth S, Krumbholz R, Crawford J, Bormann C, Dunham S, Yao M, Rouleau C, Bagley RG, Yu X-J, et al. Genz-644282, a Novel Non-Camptothecin Topoisomerase I Inhibitor for Cancer Treatment. Clin Cancer Res. 2011;17(9):2777–2787.
  • Falvo E, Arcovito A, Conti G, Cipolla G, Pitea M, Morea V, Damiani V, Sala G, Fracasso G, Ceci P, et al. Engineered Human Nanoferritin Bearing the Drug Genz-644282 for Cancer Therapy. Pharmaceutics. 2020;12(10):992.
  • Bio M, Mahabubur KM, Lim I, Rajaputra P, Hurst RE, You Y. Singlet oxygen-activatable Paclitaxel prodrugs via intermolecular activation for combined PDT and chemotherapy. Bioorg Med Chem Lett. 2019;29(12):1537–1540.
  • Li R, Ma Y, Dong Y, Zhao Z, You C, Huang S, Li X, Wang F, Zhang Y. Novel Paclitaxel-Loaded Nanoparticles Based on Human H Chain Ferritin for Tumor-Targeted Delivery. ACS Biomater Sci Eng. 2019;5(12):6645–6654.
  • Ma Y, Li R, Dong Y, You C, Huang S, Li X, Wang F, Zhang Y. tLyP-1 peptide functionalized human H chain ferritin for targeted delivery of paclitaxel. Int J Nanomedicine. 2021;16:789–802.
  • Pandolfi L, Bellini M, Vanna R, Morasso C, Zago A, Carcano S, Avvakumova S, Bertolini JA, Rizzuto MA, Colombo M, et al. H-ferritin enriches the curcumin uptake and improves the therapeutic efficacy in triple negative breast cancer cells. Biomacromolecules. 2017;18(10):3318–3330.
  • Kuruppu AI, Zhang L, Collins H, Turyanska L, Thomas NR, Bradshaw TD. An Apoferritin-based Drug Delivery System for the Tyrosine Kinase Inhibitor Gefitinib. Adv Healthc Mater. 2015;4(18):2816–2821.
  • Inoue I, Chiba M, Ito K, Okamatsu Y, Suga Y, Kitahara Y, Nakahara Y, Endo Y, Takahashi K, Tagami U, et al. One-step construction of ferritin encapsulation drugs for cancer chemotherapy. Nanoscale. 2021;13(3):1875–1883.
  • Jiang B, Chen X, Sun G, Chen X, Yin Y, Jin Y, Mi Q, Ma L, Yang Y, Yan X, et al. A natural drug entry channel in the ferritin nanocage. Nano Today. 2020; 35:100948.
  • Zhang BL, Tang GH, He JY, Yan XY, Fan KL. Ferritin nanocage: a promising and designable multi-module platform for constructing dynamic nanoassembly-based drug nanocarrier. Adv Drug Delivery Rev . 2021;176:113892.
  • Chen S, Liu Y, Zhu L, Meng D, Zhang L, Wang Q, Hu J, Wang D, Wang Z, Zhou Z, et al. Chaotrope-controlled fabrication of ferritin-salvianolic acid B- epigallocatechin gallate three-layer nanoparticle by the flexibility of ferritin channels. J Agric Food Chem. 2021;69(41):12314–12322.
  • Jiang B, Fang L, Wu KM, Yan XY, Fan KL. Ferritins as natural and artificial nanozymes for theranostics. Theranostics. 2020;10(2):687–706.
  • Li Y, Liu G, Ma J, Lin J, Lin H, Su G, Chen D, Ye S, Chen X, Zhu X, et al. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. J Control Release. 2017;258:95–107.
  • Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. Acs Nano 2016;10(3):3453–3460.
  • Li H, Zhang W, Ding L, Li XW, Wu Y, Tang JH. Prussian blue-modified ferritin nanoparticles for effective tumor chemo-photothermal combination therapy via enhancing reactive oxygen species production. J Biomater Appl. 2019;33(9):1202–1213.
  • Zhang J, Zeng Y, Su M, Yu M, Zhang Y, Cheng H, Zheng H, Liu J, Wang X, Lei Z, et al. Multifunctional Ferritin Nanoparticles as Theranostics for Imaging-Guided Tumor Phototherapy. J Biomed Nanotechnol. 2019;15(7):1546–1555.
  • Zhen ZP, Tang W, Zhang WZ, Xie J. Folic acid conjugated ferritins as photosensitizer carriers for photodynamic therapy. Nanoscale. 2015;7(23):10330–10333.
  • Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA Versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4:e252.
  • Li L, Muñoz-Culla M, Carmona U, Lopez MP, Yang F, Trigueros C, Otaegui D, Zhang L, Knez M. Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells. Biomaterials. 2016;98:143–151.
  • Chen H, Ma L, Dai H, Fu Y, Han X, Zhang Y. The construction of self-protective ferritin nanocage to cross dynamic gastrointestinal barriers with improved delivery efficiency. Food Chem . 2022;397:133680.
  • Zhou Z, Sun G, Liu Y, Gao Y, Xu J, Meng D, Strappe P, Blanchard C, Yang R. A Novel Approach to Prepare Protein-proanthocyanidins Nano-complexes by the Reversible Assembly of Ferritin Cage. FSTR. 2017;23(2):329–337.
  • Yang R, Tian J, Liu YQ, Yang ZY, Wu DD, Zhou ZK. Thermally Induced Encapsulation of Food Nutrients into Phytoferritin through the Flexible Channels without Additives. J Agric Food Chem. 2017;65(46):9950–9955.
  • Wang Z, Zhao Y, Zhang S, Chen X, Sun G, Zhang B, Jiang B, Yang Y, Yan X, Fan K, et al. Re-engineering the inner surface of ferritin nanocage enables dual drug payloads for synergistic tumor therapy. Theranostics. 2022;12(4):1800–1815.
  • Mansourizadeh F, Alberti D, Bitonto V, Tripepi M, Sepehri H, Khoee S, Geninatti Crich S. Efficient synergistic combination effect of Quercetin with Curcumin on breast cancer cell apoptosis through their loading into Apo ferritin cavity. Colloids Surf B Biointerfaces. 2020;191:110982.
  • Chen H, Dai H, Zhu H, Ma L, Fu Y, Feng X, Sun Y, Zhang Y. Construction of dual-compartmental micro-droplet via shrimp ferritin nanocages stabilized Pickering emulsions for co-encapsulation of hydrophobic/hydrophilic bioactive compounds. Food Hydrocolloids. 2022;126:107443.
  • Pang J, Feng X, Liang Q, Zheng X, Duan Y, Zhang X, Zhang J, Chen Y, Fan K, Gao L, et al. Ferritin-nanocaged ATP traverses the blood-testis barrier and enhances sperm motility in an asthenozoospermia model. Acs Nano. 2022;16(3):4175–4185.
  • Kim JW, Lee KK, Park KW, Kim M, Lee CS. Genetically modified ferritin nanoparticles with bone-targeting peptides for bone imaging. IJMS. 2021;22(9):4854.
  • Yao HC, Zhao WW, Zhang SG, Guo XF, Li Y, Du B. Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J Mater Chem B. 2018;6(19):3107–3115.
  • Antonelli A, Sfara C, Battistelli S, Canonico B, Arcangeletti M, Manuali E, Salamida S, Papa S, Magnani M. New strategies to prolong the in vivo life span of iron-based contrast agents for MRI. Plos One. 2013;8(10):e78542.
  • Valero E, Fiorini S, Tambalo S, Busquier H, Callejas-Fernández J, Marzola P, Gálvez N, Domínguez-Vera JM. In vivo long-term magnetic resonance imaging activity of ferritin-based magnetic nanoparticles versus a standard contrast agent. J Med Chem. 2014;57(13):5686–5692.
  • Mittleman DM. Twenty years of terahertz imaging Invited. Opt Express. 2018;26(8):9417–9431.
  • Yang Z, Tang D, Hu J, Tang M, Zhang M, Cui H‐L, Wang L, Chang C, Fan C, Li J, et al. Near-field nanoscopic terahertz imaging of single proteins. Small. 2021;17(3):2005814.
  • Huang XL, Xue Y, Wu JL, Zhan Q, Zhao JM. MRI tracking of SPIO- and Fth1-labeled bone marrow mesenchymal stromal cell transplantation for treatment of stroke. Contrast Media Mol Imaging . 2019;2019:1–10.
  • Lv CY, Yin SH, Zhang XQ, Hu JW, Zhang T, Zhao GH. 16-Mer ferritin-like protein templated gold nanoclusters for bioimaging detection of methylmercury in the brain of living mice. Anal Chim Acta. 2020;1127:149–155.