1,188
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Design, synthesis, and antitumor efficacy of novel 5-deazaflavin derivatives backed by kinase screening, docking, and ADME studies

, , , , , , , , & show all
Article: 2220570 | Received 25 Apr 2023, Accepted 29 May 2023, Published online: 21 Jun 2023

References

  • Shrestha AR, Ali HI, Ashida N, Nagamatsu T. Antitumor studies. Part 5: synthesis, antitumor activity, and molecular docking study of 5-(monosubstituted amino)-2-deoxo-2-phenyl-5-deazaflavins. Bioorg Med Chem. 2008;16(20):9161–9170.
  • Ali HI, Tomita K, Akaho E, Kambara H, Miura S, Hayakawa H, Ashida N, Kawashima Y, Yamagishi T, Ikeya H, et al. Antitumor studies. Part 1: design, synthesis, antitumor activity, and AutoDock study of 2-deoxo-2-phenyl-5-deazaflavins and 2-deoxo-2-phenylflavin-5-oxides as a new class of antitumor agents. Bioorg Med Chem. 2007;15(1):242–256.
  • Ali HI, Ashida N, Nagamatsu T. Antitumor studies. part 3: design, synthesis, antitumor activity, and molecular docking study of novel 2-methylthio-, 2-amino-, and 2-(N-substituted amino)-10-alkyl-2-deoxo-5-deazaflavins. Bioorg Med Chem. 2007;15(19):6336–6352.
  • Ali HI, Ashida N, Nagamatsu T. Antitumor studies. Part 4: Design, synthesis, antitumor activity, and molecular docking study of novel 2-substituted 2-deoxoflavin-5-oxides, 2-deoxoalloxazine-5-oxides, and their 5-deaza analogs. Bioorg Med Chem. 2008;16(2):922–940.
  • Ali HI, Tomita K, Akaho E, Kunishima M, Kawashima Y, Yamagishi T, Ikeya H, Nagamatsu T. Antitumor studies – part 2: structure-activity relationship study for flavin analogs including investigations on their in vitro antitumor assay and docking simulation into protein tyrosine kinase. Eur J Med Chem. 2008;43(7):1376–1389.
  • Ali HI, Nagamatsu T, Akaho E. Structure-based drug design and AutoDock study of potential protein tyrosine kinase inhibitors. Bioinformation. 2011;5(9):368–374.
  • Malki WH, Gouda AM, Ali HEA, Al-Rousan R, Samaha D, Abdalla AN, Bustamante J, Abd Elmageed ZY, Ali HI. Structural-based design, synthesis, and antitumor activity of novel alloxazine analogues with potential selective kinase inhibition. Eur J Med Chem. 2018;152:31–52.
  • Wilson JM, Henderson G, Black F, Sutherland A, Ludwig RL, Vousden KH, Robins DJ. Synthesis of 5-deazaflavin derivatives and their activation of p53 in cells. Bioorg Med Chem. 2007;15(1):77–86.
  • Dickens MP, Roxburgh P, Hock A, Mezna M, Kellam B, Vousden KH, Fischer PM. 5-Deazaflavin derivatives as inhibitors of p53 ubiquitination by HDM2. Bioorg Med Chem. 2013;21(22):6868–6877.
  • Fenner H, Grauert R, Hemmerich P, Michel H, Massey V. 5-Thia-5-deazaflavin, a 1e–transferring flavin analog. Eur J Biochem. 1979;95(1):183–191.
  • Kimachi T, Yoneda F, Sasaki T. New synthesis of 5-amino-5-deazaflavin derivatives by direct coupling of 5-deazaflavins and amines. J Heterocycl Chem. 1992;29(4):763–765.
  • Yoneda F, Sakuma Y, Hemmerich P. Dehydrogenation of alcohols by pyrimido[4,5-b]quinoline-2(3H),4(10H)-dione (5-deazaflavin). J Chem Soc, Chem Commun. 1977;22(22):825–826.
  • Eirich LD, Vogels GD, Wolfe RS. Proposed structure for coenzyme F420 from Methanobacterium. Biochemistry. 1978;17(22):4583–4593.
  • Hossain MS, Le CQ, Joseph E, Nguyen TQ, Johnson-Winters K, Foss FW. Jr. Convenient synthesis of deazaflavin cofactor FO and its activity in F(420)-dependent NADP reductase. Org Biomol Chem. 2015;13(18):5082–5085.
  • Philmus B, Decamps L, Berteau O, Begley TP. Biosynthetic versatility and coordinated action of 5'-deoxyadenosyl radicals in deazaflavin biosynthesis. J Am Chem Soc. 2015;137(16):5406–5413.
  • Nagamatsu T,H, Yoneda F. Synthesis of pyridodipyrimidines as a redox catalyst and their autorecycling oxidation of alcohols. J Pharmacobio-Dyn. 1992;15:s-42.
  • Yoneda F. Organic catalysts and autorecycling reactions. Yakugaku Zasshi. 1984;104(2):97–126.
  • el-Gazzar AB, Hafez HN, Nawwar GA. New acyclic nucleosides analogues as potential analgesic, anti-inflammatory, anti-oxidant and anti-microbial derived from pyrimido[4,5-b]quinolines. Eur J Med Chem. 2009;44(4):1427–1436.
  • El-Gohary NS. Synthesis and in vitro antitumor activity of new quinoline, pyrimido[4,5-b]quinoline, [1,2,3]triazino[4,5-b]quinoline, and [1,2,4]triazolo[2′,3′:3,4]pyrimido[6,5-b]quinoline analogs. Med Chem Res. 2013;22(11):5236–5247.
  • Ghorab MM, Ragab FA, Heiba HI, Arafa RK, El-Hossary EM. In vitro anticancer screening and radiosensitizing evaluation of some new quinolines and pyrimido[4,5-b]quinolines bearing a sulfonamide moiety. Eur J Med Chem. 2010;45(9):3677–3684.
  • O'Brien DE, Weinslock LT, Cheng CC. Synthesis of 10-deazariboflavin and related 2,4-dioxopyrimido[4,5-b]quinolones. J Heterocycl Chem. 1970;7(1):99–105.
  • Yoneda F, Sakuma Y, Mizumoto S, Ito R. Syntheses of 5-deazaflavines. J Chem Soc Perkin Trans 1. 1976;(16):1805–1805.
  • Chen X, Tanaka K, Yoneda F. A new synthetic approach to 5-deazaflavin and 5-deaza-10-thiaflavin. Chem Pharm Bull. 1990;38(3):612–615.
  • Lacroix A, Fleury J-P. A new synthesis of 5-deazaflavins. Tetrahedron Lett. 1978;19(37):3469–3470.
  • Marjani AP, Khalafy J, Ebrahimlo ARM, Prager RH. Synthesis of some pyrimido[4,5-b]quinoline derivatives. Bull Korean Chem Soc. 2011;32(7):2183–2186.
  • Knabe J, Heckmann R. Dihydroisochinolinumlagerung, 30. Mitt. Synthese einiger Furo[3,2-c]pyridine. Arch Pharm Pharm Med Chem. 1980;313(9):809–811.
  • Moriyama K, Nagamatsu T, Yoneda F. Synthesis of 8-methylpyrido[2,3-d:6,5-d’X]dipyrimidine-2,4,6(3H,10H,7H)-triones and their use in the oxidation of alcohols. J Heterocycl Chem. 1986;23(1):241–243.
  • Taylor EC, Cain CK. Pteridines. VII. The synthesis of 2-alkylaminopteridines. J Am Chem Soc. 1952;74(7):1644–1647.
  • Taylor EC, Cain CK. Pteridines. VI. Replacement reactions of amino, hydroxyl, and mercapto groups in the pteridine series. J Am Chem Soc. 1951;73(9):4384–4387.
  • Coppola GM, Schuster HF. The chemistry of 2H-3,1-benzoxazine-2,4-(1H)-dione (isatoic anhydride). XXI: [1]. A mild process for the preparation of 10-alkyl-9-acridanones and it’s application to the synthesis of acridone alkaloids. J Heterocycl Chem. 1989;26(4):957–964.
  • Kadry AM, Aal EHA, Abdel-Fattah HA, Al-Mahmoudy AM. Synthesis an antimicrobial activity of new triazolopyrimidinecarbonitrile derivatives. Arkivoc. 2008;2008(10):127–134.
  • Farghaly AH., Abdel-Rahman   Synthesis, reactions and antimicrobial activity of some new indolyl-1,3,4-oxadiazole, triazole and pyrazolederivatives. Jnl Chinese Chemical Soc. 2004;51(1):147–156.
  • Irfan MS. S. Synthesis, characterization and antimicrobial activity of some substituted Ǹ-arylidene-2-(quinolin-8-yloxy)acetohydrazide. Acta Pharm Sci. 2009;51:163–168.
  • Bhat I, Chaithanya S, Satyanarayana PD, Kalluraya B. The synthesis and antimicrobial study of some azetidinone derivatives with the para-anisidine moiety. J Serb Chem Soc. 2007;72(5):437–442.
  • Cacic M, Trkovnik M, Cacic F, Has-Schon E. Synthesis and antimicrobial activity of some derivatives of (7-hydroxy-2-oxo-2H-chromen-4-yl)-acetic acid hydrazide. Molecules. 2006;11(2):134–147.
  • Dabholkar V,SASA. Synthesis of novel oxazoles and their hydrazones. Rasayan J Chem. 2010;3:761–765.
  • Nogimori T, Emerson CH, Braverman LE, Wu CF, Gambino J, Wright GE. Synthesis of 6-anilino-2-thiouracils and their inhibition of human placenta iodothyronine deiodinase. J Med Chem. 1985;28(11):1692–1694.
  • Hübsch W, Pfleiderer W. Part LXXXVII. Synthesis and properties of 8-substituted 2-Thiolumazines. HCA. 1988;71(6):1379–1391.
  • Fathalla W, Čajan M, Pazdera P. Regioselectivity of electrophilic attack on 4-methyl-1-thioxo-1,2,4,5-tetrahydro[1,2,4]triazolo[4,3-a]quinazolin-5-one. Part 1: reactions at the sulfur atom. Molecules. 2001;6(6):557–573.
  • Israel M, Protopapa HK, Schlein HN, Modest EJ. Pyrimidine derivatives. v. synthesis of substituted pyrimidines from 4-amino-6-chloro-2-methylthiopyrimidine. J Med Chem. 1964;7:5–10.
  • Soule HD, Maloney TM, Wolman SR, Peterson WD, Jr., Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 1990;50(18):6075–6086.
  • Masters JR. HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer. 2002;2(4):315–319.
  • Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13(4):215–20110812.
  • Singh JK, Simões BM, Howell SJ, Farnie G, Clarke RB. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res. 2013;15(4):210.
  • Abdel-Fatah TM, Middleton FK, Arora A, Agarwal D, Chen T, Moseley PM, Perry C, Doherty R, Chan S, Green AR, et al. Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer. Mol Oncol. 2015;9(3):569–585.
  • Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. Embo J. 2000;19(13):3159–3167.
  • Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, Patel C, Orina JN, Eliseeva TA, Singal V, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci USA. 2011;108(46):18708–18713.
  • Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC, Gygi SP. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA. 2004;101(33):12130–12135.
  • Watson NA, Cartwright TN, Lawless C, Cámara-Donoso M, Sen O, Sako K, Hirota T, Kimura H, Higgins JMG. Kinase inhibition profiles as a tool to identify kinases for specific phosphorylation sites. Nat Commun. 2020;11(1):1684–20200403.
  • Wu C, Macleod I, Su AI. BioGPS and MyGene.info: organizing online, gene-centric information. Nucleic Acids Res. 2013;41(Database issue):D561–5.
  • Grueneberg DA, Degot S, Pearlberg J, Li W, Davies JE, Baldwin A, Endege W, Doench J, Sawyer J, Hu Y, et al. Kinase requirements in human cells: I. Comparing kinase requirements across various cell types. Proc Natl Acad Sci USA. 2008;105(43):16472–16477.
  • Soule HD, Vazguez J, Long A, Albert S, Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 1973;51(5):1409–1416.
  • Landry JJ, Pyl PT, Rausch T, Zichner T, Tekkedil MM, Stütz AM, Jauch A, Aiyar RS, Pau G, Delhomme N, et al. The genomic and transcriptomic landscape of a HeLa cell line. G3. 2013;3(8):1213–1224.
  • Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9(9):631–643.
  • Shajahan-Haq AN, Cook KL, Schwartz-Roberts JL, Eltayeb AE, Demas DM, Warri AM, Facey CO, Hilakivi-Clarke LA, Clarke R. MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer. Mol Cancer. 2014;13:239–20141023.
  • Hafner M, Niepel M, Chung M, Sorger PK. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat Methods. 2016;13(6):521–527.
  • Sharma A, Singh K, Almasan A. Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol. 2012;920:613–626.
  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.
  • Green DR. The death receptor pathway of apoptosis. Cold Spring Harb Perspect Biol. 2022;14(2):a041053.
  • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–752.
  • Cowan-Jacob SW, Fendrich G, Floersheimer A, Furet P, Liebetanz J, Rummel G, Rheinberger P, Centeleghe M, Fabbro D, Manley PW. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr D Biol Crystallogr. 2007;63(Pt 1):80–93.
  • Karoulia Z, Wu Y, Ahmed TA, Xin Q, Bollard J, Krepler C, Wu X, Zhang C, Bollag G, Herlyn M, et al. An integrated model of RAF inhibitor action predicts inhibitor activity against oncogenic BRAF signaling. Cancer Cell. 2016;30(3):485–498.
  • Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN, Snell GP, Zou H, Sang BC, Wilson KP. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem. 2004;279(30):31655–31663.
  • George DM, Breinlinger EC, Friedman M, Zhang Y, Wang J, Argiriadi M, Bansal-Pakala P, Barth M, Duignan DB, Honore P, et al. Discovery of selective and orally bioavailable protein kinase Cθ (PKCθ) inhibitors from a fragment hit. J Med Chem. 2015;58(1):222–236.
  • Tresaugues L, Roos A, Arrowsmith CH, Berglund H, Bountra C, Collins R, Edwards AM, Flodin S, Flores A, Graslund S, et al. Crystal structure of VEGFR1 in complex with N-(4-chlorophenyl)-2-((pyridin-4-ylmethyl)amino)benzamide. (To Be Published). https://www.rcsb.org/structure/3HNG.
  • Levinson NM, Boxer SG. A conserved water-mediated hydrogen bond network defines bosutinib’s kinase selectivity. Nat Chem Biol. 2014;10(2):127–132.
  • Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257–W263.
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717–20170303.
  • Nagamatsu T, Hashiguchi Y, Yoneda F. A new, general, and convenient synthesis of 5-deazaflavins (5-deazaisoalloxazines) and bis-(5-deazaflavin-10-yl) alkanes. J Chem Soc Perkin Trans 1. 1984;1:561–565.
  • Miura S, Yoshimura Y, Endo M, Machida H, Matsuda A, Tanaka M, Sasaki T. Antitumor activity of a novel orally effective nucleoside, 1-(2-deoxy-2-fluoro-4-thio-beta-D-arabinofuranosyl)cytosine. Cancer Lett. 1998;129(1):103–110.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.
  • Mahmoud S, Samaha D, Mohamed MS, Abou Taleb NA, Elsawy MA, Nagamatsu T, Ali HI. Design, synthesis, antitumor activity and molecular docking study of novel 5-deazaalloxazine analogs. Molecules. 2020;25(11):2518.
  • Elwaie TA, Abbas SE, Aly EI, George RF, Ali H, Kraiouchkine N, Abdelwahed KS, Fandy TE, El Sayed KA, Abd Elmageed ZY, et al. HER2 kinase-targeted breast cancer therapy: design, synthesis, and in vitro and in vivo evaluation of novel lapatinib congeners as selective and potent her2 inhibitors with favorable metabolic stability. J Med Chem. 2020;63(24):15906–15945.
  • Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995;184(1):39–51.
  • Sineh Sepehr K, Baradaran B, Mazandarani M, Yousefi B, Abdollahpour Alitappeh M, Khori V. Growth-inhibitory and apoptosis-inducing effects of Punica granatum L. var. spinosa (Apple Punice) on fibrosarcoma cell lines. Adv Pharm Bull. 2014;4(Suppl 2):583–590.
  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791.