850
Views
2
CrossRef citations to date
0
Altmetric
Short Communication

Rational repurposing, synthesis, in vitro and in silico studies of chromone-peptidyl hybrids as potential agents against Leishmania donovani

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , , , ORCID Icon, & ORCID Icon show all
Article: 2229071 | Received 17 Mar 2023, Accepted 19 Jun 2023, Published online: 29 Jun 2023

References

  • Joshi G, Quadir SS, Yadav KS. Road map to the treatment of neglected tropical diseases: nanocarriers interventions. J Control Release. 2021;339:51–74.
  • Bilgic-Temel A, Murrell DF, Uzun S. Cutaneous leishmaniasis: a neglected disfiguring disease for women. Int J Womens Dermatol. 2019;5(3):158–165.
  • Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, Boer Md. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS One. 2012;7(5):e35671.
  • Tuon FF, Dantas LR, de Souza RM, Ribeiro VST, Amato VS. Liposomal drug delivery systems for the treatment of leishmaniasis. Parasitol Res. 2022;121(11):3073–3082.
  • Pinheiro AC, de Souza MVN. Current leishmaniasis drug discovery. RSC Med Chem. 2022;13(9):1029–1043.
  • Madusanka RK, Silva H, Karunaweera ND. Treatment of Cutaneous Leishmaniasis and insights into species-specific responses: a narrative review. Infect Dis Ther. 2022;11(2):695–711.
  • de Santana NS, de Oliveira de Siqueira LB, Santos-Oliveira R, dos Santos Matos AP, Ricci-Júnior E. Nanoparticles for the treatment of visceral leishmaniasis: review. J Nanoparticle Res. 2023;25:24.
  • Khabsa J, Jain S, El-Harakeh A, Rizkallah C, Pandey DK, Manaye N, Honein-AbouHaidar G, Halleux C, Dagne DA, Akl EA. Stakeholders’ views and perspectives on treatments of visceral leishmaniasis and their outcomes in HIV-coinfected patients in East Africa and South-East Asia: a mixed methods study. PLoS Negl Trop Dis. 2022;16(8):e0010624.
  • Kumari S, Kumar V, Tiwari RK, Ravidas V, Pandey K, Kumar A. Amphotericin B: a drug of choice for Visceral Leishmaniasis. Acta Trop. 2022;235:106661.
  • Yeshaw Y, Tsegaye AT, Nigatu SG. Incidence of mortality and its predictors among adult Visceral Leishmaniasis patients at the university of Gondar hospital: a retrospective cohort study. Infect Drug Resist. 2020;13:881–891.
  • Scarpini S, Dondi A, Totaro C, Biagi C, Melchionda F, Zama D, Pierantoni L, Gennari M, Campagna C, Prete A, et al. Visceral Leishmaniasis: epidemiology, diagnosis, and treatment regimens in different geographical areas with a focus on pediatrics. Microorganisms. 2022;10(10):1887.
  • Wijnant G-J, Dumetz F, Dirkx L, Bulté D, Cuypers B, Van Bocxlaer K, Hendrickx S. Tackling drug resistance and other causes of treatment failure in Leishmaniasis. Front Trop Dis. 2022;3:837460.
  • Jourdan J-P, Bureau R, Rochais C, Dallemagne P. Drug repositioning: a brief overview. J Pharm Pharmacol. 2020;72(9):1145–1151.
  • Hassan AHE, Phan T-N, Choi Y, Moon S, No JH, Lee YS. Design, rational repurposing, synthesis, in vitro evaluation, homology modeling and in silico study of Sulfuretin Analogs as Potential Antileishmanial hit compounds. Pharmaceuticals. 2022;15(9):1058.
  • Farag AK, Hassan AHE, Ahn BS, Park KD, Roh EJ. Reprofiling of pyrimidine-based DAPK1/CSF1R dual inhibitors: identification of 2,5-diamino-4-pyrimidinol derivatives as novel potential anticancer lead compounds. J Enzyme Inhib Med Chem. 2020;35(1):311–324.
  • Braga SS. Multi-target drugs active against leishmaniasis: a paradigm of drug repurposing. Eur J Med Chem. 2019;183:111660.
  • Rai P, Arya H, Saha S, Kumar D, Bhatt TK. Drug repurposing based novel anti-leishmanial drug screening using in-silico and in-vitro approaches. J Biomol Struct Dyn. 2022;40(21):10812–10820.
  • Tabrez S, Rahman F, Ali R, Muhammad F, Alshehri BM, Alaidarous MA, Banawas S, Dukhyil AAB, Rub A. Repurposing of FDA-approved drugs as inhibitors of sterol C-24 methyltransferase of Leishmania donovani to fight against leishmaniasis. Drug Dev Res. 2021;82(8):1154–1161.
  • Farag AK, Hassan AHE, Chung K-S, Lee J-H, Gil H-S, Lee K-T, Roh EJ. Diarylurea derivatives comprising 2,4-diarylpyrimidines: discovery of novel potential anticancer agents via combined failed-ligands repurposing and molecular hybridization approaches. Bioorg Chem. 2020;103:104121.
  • Hassan AHE, Yoo SY, Lee KW, Yoon YM, Ryu HW, Jeong Y, Shin J-S, Kang S-Y, Kim S-Y, Lee H-H, et al. Repurposing mosloflavone/5,6,7-trimethoxyflavone-resveratrol hybrids: discovery of novel p38-α MAPK inhibitors as potent interceptors of macrophage-dependent production of proinflammatory mediators. Eur J Med Chem. 2019;180:253–267.
  • Berenstein AJ, Magariños MP, Chernomoretz A, Agüero F. A multilayer network approach for guiding drug repositioning in neglected diseases. PLoS Negl Trop Dis. 2016;10(1):e0004300.
  • Andrade-Neto VV, Cunha-Junior EF, Faioes VdS, Martins TP, Silva RL, Leon LL, Torres-Santos EC. Leishmaniasis treatment: update of possibilities for drug repurposing. Front Biosci. 2018;23:967–996.
  • Cutinho PF, Shankar RC, Anand A, Roy J, Mehta CH, Nayak UY, Murahari M. Hit identification and drug repositioning of potential non-nucleoside reverse transcriptase inhibitors by structure-based approach using computational tools (part II). J Biomol Struct Dyn. 2020;38(13):3772–3789.
  • Ferreira Letícia T, Rodrigues J, Cassiano Gustavo C, Tavella Tatyana A, Tomaz Kaira Cristina P, Baia-da-Silva Djane C, Souza Macejane F, Lima Marilia Nunes do N, Mottin M, Almeida Ludimila D, et al. Computational chemogenomics drug repositioning strategy enables the discovery of epirubicin as a new repurposed hit for Plasmodium falciparum and P. vivax. Antimicrob Agents Chemother. 2020;64(9):e02041-02019.
  • Casanova M, Gonzalez IJ, Sprissler C, Zalila H, Dacher M, Basmaciyan L, Späth GF, Azas N, Fasel N. Implication of different domains of the Leishmania major metacaspase in cell death and autophagy. Cell Death Dis. 2015;6(10):e1933.
  • d’Avila-Levy CM, Marinho FA, Santos LO, Martins JL, Santos ALS, Branquinha MH. Antileishmanial activity of MDL 28170, a potent calpain inhibitor. Int J Antimicrob Agents. 2006;28(2):138–142.
  • Marinho FA, Gonçalves KCS, Oliveira SSC, Gonçalves DS, Matteoli FP, Seabra SH, Oliveira ACS, Bellio M, Oliveira SS, Souto-Padrón T, et al. The Calpain Inhibitor MDL28170 induces the expression of apoptotic markers in Leishmania amazonensis Promastigotes. PLoS One. 2014;9(1):e87659.
  • Steert K, Berg M, Mottram JC, Westrop GD, Coombs GH, Cos P, Maes L, Joossens J, Van der Veken P, Haemers A, et al. α-Ketoheterocycles as inhibitors of Leishmania mexicana Cysteine protease CPB. ChemMedChem. 2010;5(10):1734–1748.
  • Marinho FA, Sangenito LS, Oliveira SSC, De Arruda LB, D'Ávila-Levy CM, Santos ALS, Branquinha MH. The potent cell permeable calpain inhibitor MDL28170 affects the interaction of Leishmania amazonensis with macrophages and shows anti-amastigote activity. Parasitol Int. 2017;66(5):579–583.
  • Ennes-Vidal V, Menna-Barreto RFS, Branquinha MH, Dos Santos ALS, D'Avila-Levy CM. Why calpain inhibitors are interesting leading compounds to search for new therapeutic options to treat leishmaniasis? Parasitology. 2017;144(2):117–123.
  • Hassan AHE, Kim HJ, Park K, Choi Y, Moon S, Lee CH, Kim YJ, Cho SB, Gee MS, Lee D, et al. Synthesis and biological evaluation of O6-Aminoalkyl-Hispidol analogs as multifunctional monoamine oxidase-B inhibitors towards management of neurodegenerative diseases. Antioxidants. 2023;12(5):1033.
  • Lee H-H, Shin J-S, Chung K-S, Kim J-M, Jung S-H, Yoo H-S, Hassan AHE, Lee JK, Inn K-S, Lee S, et al. 3′,4′-Dihydroxyflavone mitigates inflammatory responses by inhibiting LPS and TLR4/MD2 interaction. Phytomedicine. 2023;109:154553.
  • Hassan AHE, Kim HJ, Gee MS, Park J-H, Jeon HR, Lee CJ, Choi Y, Moon S, Lee D, Lee JK, et al. Positional scanning of natural product hispidol’s ring-B: discovery of highly selective human monoamine oxidase-B inhibitor analogues downregulating neuroinflammation for management of neurodegenerative diseases. J Enzyme Inhib Med Chem. 2022;37(1):768–780.
  • Gil H-S, Lee J-H, Farag AK, Hassan AHE, Chung K-S, Choi J-H, Roh E-J, Lee K-T. AKF-D52, a synthetic Phenoxypyrimidine-urea derivative, triggers extrinsic/intrinsic apoptosis and cytoprotective autophagy in human non-small cell lung cancer cells. Cancers. 2021;13(22):5849.
  • Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689–709.
  • Miranda-Sapla MM, Tomiotto-Pellissier F, Assolini JP, Carloto ACM, Bortoleti BTdS, Gonçalves MD, Tavares ER, Rodrigues JHdS, Simão ANC, Yamauchi LM, et al. trans-Chalcone modulates Leishmania amazonensis infection in vitro by Nrf2 overexpression affecting iron availability. Eur J Pharmacol. 2019;853:275–288.
  • Tomiotto-Pellissier F, Alves DR, Miranda-Sapla MM, de Morais SM, Assolini JP, da Silva Bortoleti BT, Gonçalves MD, Cataneo AHD, Kian D, Madeira TB, et al. Caryocar coriaceum extracts exert leishmanicidal effect acting in promastigote forms by apoptosis-like mechanism and intracellular amastigotes by Nrf2/HO-1/ferritin dependent response and iron depletion: Leishmanicidal effect of Caryocar coriaceum leaf exracts. Biomed Pharmacother. 2018;98:662–672.
  • Cataneo AHD, Tomiotto-Pellissier F, Miranda-Sapla MM, Assolini JP, Panis C, Kian D, Yamauchi LM, Colado Simão AN, Casagrande R, Pinge-Filho P, et al. Quercetin promotes antipromastigote effect by increasing the ROS production and anti-amastigote by upregulating Nrf2/HO-1 expression, affecting iron availability. Biomed Pharmacother. 2019;113:108745.
  • Kim SH, Lee YH, Jung SY, Kim HJ, Jin C, Lee YS. Synthesis of chromone carboxamide derivatives with antioxidative and calpain inhibitory properties. Eur J Med Chem. 2011;46(5):1721–1728.
  • Hassan AHE, Phan T-N, Yoon S, Lee CJ, Jeon HR, Kim S-H, No JH, Lee YS. Pyrrolidine-based 3-deoxysphingosylphosphorylcholine analogs as possible candidates against neglected tropical diseases (NTDs): identification of hit compounds towards development of potential treatment of Leishmania donovani. J Enzyme Inhib Med Chem. 2021;36(1):1922–1930.
  • Phan T-N, Baek K-H, Lee N, Byun SY, Shum D, No JH. In vitro and in vivo activity of mTOR kinase and PI3K inhibitors Against Leishmania donovani and Trypanosoma brucei. Molecules. 2020;25(8):1980.
  • Silva CFM, Pinto DCGA, Fernandes PA, Silva AMS. Evolution of chromone-like compounds as potential antileishmanial agents, through the 21st century. Expert Opin Drug Discov. 2020;15(12):1425–1439.
  • Cardona-Galeano W, Yepes AF, Quintero-Saumeth J, Robledo SM, Alzate F, Rojano B. A biologically active chromone from Bomarea setacea (alstroemeriaceae): Leishmanicidal, antioxidant and multilevel computational studies. ChemistrySelect. 2022;7(45):e202203852.
  • Mallick S, Dutta A, Ghosh J, Maiti S, Mandal AK, Banerjee R, Bandyopadhyay C, Pal C. protective therapy with Novel chromone derivative against Leishmania donovani infection induces Th1 response in vivo. Chemotherapy. 2011;57(5):388–393.
  • Otero E, Vergara S, Robledo SM, Cardona W, Carda M, Vélez ID, Rojas C, Otálvaro F. Synthesis, Leishmanicidal and cytotoxic activity of Triclosan-Chalcone, Triclosan-chromone and Triclosan-coumarin hybrids. Molecules. 2014;19(9):13251–13266.
  • Coa JC, García E, Carda M, Agut R, Vélez ID, Muñoz JA, Yepes LM, Robledo SM, Cardona WI. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids. Med Chem Res. 2017;26(7):1405–1414.
  • Kim S-Y, Hassan AHE, Chung K-S, Kim S-Y, Han H-S, Lee H-H, Jung S-H, Lee K-Y, Shin J-S, Jang E, et al. Mosloflavone-resveratrol hybrid TMS-HDMF-5z exhibits potent in vitro and in vivo anti-inflammatory effects through NF-κB, AP-1, and JAK/STAT inactivation. Front Pharmacol. 2022;13:857789.
  • Hong JY, Chung K-S, Shin J-S, Lee J-H, Gil H-S, Lee H-H, Choi E, Choi J-H, Hassan AHE, Lee YS, et al. The anti-proliferative activity of the Hybrid TMS-TMF-4f compound against human cervical cancer involves apoptosis mediated by STAT3 inactivation. Cancers. 2019;11(12):1927.
  • Hassan AHE, Choi E, Yoon YM, Lee KW, Yoo SY, Cho MC, Yang JS, Kim HI, Hong JY, Shin J-S, et al. Natural products hybrids: 3,5,4′-Trimethoxystilbene-5,6,7-trimethoxyflavone chimeric analogs as potential cytotoxic agents against diverse human cancer cells. Eur J Med Chem. 2019;161:559–580.
  • Alam MM, Hassan AHE, Lee KW, Cho MC, Yang JS, Song J, Min KH, Hong J, Kim D-H, Lee YS. Design, synthesis and cytotoxicity of chimeric erlotinib-alkylphospholipid hybrids. Bioorg Chem. 2019;84:51–62.
  • Alam MM, Hassan AHE, Kwon YH, Lee HJ, Kim NY, Min KH, Lee S-Y, Kim D-H, Lee YS. Design, synthesis and evaluation of alkylphosphocholine-gefitinib conjugates as multitarget anticancer agents. Arch Pharm Res. 2018;41(1):35–45.
  • Lee KY, Seob Lee K, Jin C, Lee YS. Design and synthesis of calpain inhibitory 6-pyridone 2-carboxamide derivatives. Eur J Med Chem. 2009;44(3):1331–1334.
  • Kulshrestha A, Bhandari V, Mukhopadhyay R, Ramesh V, Sundar S, Maes L, Dujardin JC, Roy S, Salotra P. Validation of a simple resazurin-based promastigote assay for the routine monitoring of miltefosine susceptibility in clinical isolates of Leishmania donovani. Parasitol Res. 2013;112(2):825–828.
  • Branquinha MH, Marinho FA, Sangenito LS, Oliveira SSC, Goncalves KC, Ennes-Vidal V, d‘Avila-Levy CM, Santos ALS. Calpains: potential targets for alternative chemotherapeutic intervention against human pathogenic Trypanosomatids. Curr Med Chem. 2013;20(25):3174–3185.
  • Studer G, Tauriello G, Bienert S, Biasini M, Johner N, Schwede T. ProMod3 – a versatile homology modelling toolbox. PLoS Comput Biol. 2021;17(1):e1008667.
  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–W303.
  • Bienert S, Waterhouse A, de Beer TAP, Tauriello G, Studer G, Bordoli L, Schwede T. The SWISS-MODEL repository – new features and functionality. Nucleic Acids Res. 2017;45(D1):D313–D319.