1,091
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Repurposing of rabeprazole as an anti-Trypanosoma cruzi drug that targets cellular triosephosphate isomerase

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2231169 | Received 18 Apr 2023, Accepted 25 Jun 2023, Published online: 03 Jul 2023

References

  • Lidani KCF, Andrade FA, Bavia L, Damasceno FS, Beltrame MH, Messias-Reason IJ, Sandri TL. Chagas disease: from discovery to a worldwide health problem. Front Public Health. 2019;7:166.
  • Chagas disease (American trypanosomiasis) [Internet]. 2019. www.who.int. Available from: https://www.who.int/health-topics/chagas-disease#tab=tab_1.
  • Coura JR. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions – A comprehensive review. Mem Inst Oswaldo Cruz. 2015;110(3):277–282.
  • Franco-Paredes C, Von A, Hidron A, Rodríguez-Morales AJ, Tellez I, Barragán M, Jones D, Náquira CG, Mendez J. Chagas disease: an impediment in achieving the Millennium Development Goals in Latin America. BMC Int Health Hum Rights. 2007;7(1):7.
  • Pérez-Molina JA, Molina I. Chagas disease. Lancet. 2018;391(10115):82–94.
  • Howard EJ, Xiong X, Carlier Y, Sosa-Estani S, Buekens P. Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. BJOG. 2014;121(1):22–33.
  • Wilkinson SR, Kelly JM. Trypanocidal drugs: mechanisms, resistance and new targets. Expert Rev Mol Med. 2009;11:e31
  • Hasslocher-Moreno AM, do Brasil PEAA, de Sousa AS, Xavier SS, Chambela MC, Sperandio da Silva GM. Safety of benznidazole use in the treatment of chronic Chagas’ disease. J Antimicrob Chemother. 2012;67(5):1261–1266.
  • Morillo CA, Marin-Neto JA, Avezum A, Sosa-Estani S, Rassi A, Rosas F, Villena E, Quiroz R, Bonilla R, Britto C, et al. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med. 2015;373(14):1295–1306.
  • Abbott A, Montgomery SP, Chancey RJ. Characteristics and adverse events of patients for whom nifurtimox was released through CDC-sponsored investigational new drug program for treatment of chagas disease—United States, 2001–2021. MMWR Morb Mortal Wkly Rep. 2022;71(10):371–374.
  • Castro JA, de Mecca MM, Bartel LC. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum Exp Toxicol. 2006;25(8):471–479.
  • Campos MCO, Leon LL, Taylor MC, Kelly JM. Benznidazole-resistance in Trypanosoma cruzi: Evidence that distinct mechanisms can act in concert. Mol Biochem Parasitol. 2014;193 (1):17–19.
  • Ward AI, Lewis MD, Khan AA, McCann CJ, Francisco AF, Jayawardhana S, Taylor MC, Kelly JM. In vivo analysis of Trypanosoma cruzi persistence foci at single-cell resolution. mBio. 2020;11(4):e01242–e01320
  • Chatelain E, Ioset J-R. Phenotypic screening approaches for Chagas disease drug discovery. Expert Opin Drug Discov. 2018;13(2):141–153.
  • Mansoldo FRP, Carta F, Angeli A, Cardoso V da S, Supuran CT, Vermelho AB. Chagas disease: perspectives on the past and present and challenges in drug discovery. Molecules. 2020;25(22):5483.
  • Lepesheva GI, Hargrove TY, Rachakonda G, Wawrzak Z, Pomel S, Cojean S, Nde PN, Nes WD, Locuson CW, Calcutt MW, et al. VFV as a new effective CYP51 structure-derived drug candidate for Chagas disease and visceral leishmaniasis. J Infect Dis. 2015;212(9):1439–1448.
  • Bivona AE, Sánchez Alberti A, Matos MN, Cerny N, Cardoso AC, Morales C, González G, Cazorla SI, Malchiodi EL. Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80) as a novel immunogen for Chagas disease vaccine. PLOS Negl Trop Dis. 2018;12(3):e0006384.
  • Salas-Sarduy E, Landaburu LU, Karpiak J, Madauss KP, Cazzulo JJ, Agüero F, Alvarez VE. Novel scaffolds for inhibition of Cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Sci Rep. 2017;7(1):12073
  • Álvarez G, Perdomo C, Coronel C, Aguilera E, Varela J, Aparicio G, Zolessi F, Cabrera N, Vega C, Rolón M, et al. Multi-anti-parasitic activity of arylidene ketones and thiazolidene hydrazines against Trypanosoma cruzi and Leishmania spp. Molecules. 2017;22(5):709.
  • Zmuda F, Sastry L, Shepherd SM, Jones D, Scott A, Craggs PD, Cortes A, Gray DW, Torrie LS, De Rycker M, et al. Identification of novel Trypanosoma cruzi proteasome inhibitors using a luminescence-based high-throughput screening assay. Antimicrob Agents Chemother. 2019;63(9):e00309–e00419
  • González-González A, Sánchez-Sánchez O, Krauth-Siegel RL, Bolognesi ML, Gớmez-Escobedo R, Nogueda-Torres B, Vázquez-Jiménez LK, Saavedra E, Encalada R, Espinoza-Hicks JC, et al. In Vitro and in silico analysis of new n-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-n-oxide derivatives against Trypanosoma cruzi as trypanothione reductase inhibitors. IJMS. 2022;23(21):13315.
  • Olivares-Illana V, Rodríguez-Romero A, Becker I, Berzunza M, García J, Pérez-Montfort R, Cabrera N, López-Calahorra F, de Gómez-Puyou MT, Gómez-Puyou A, et al. Perturbation of the dimer interface of triosephosphate isomerase and its effect on Trypanosoma cruzi. PLOS Negl Trop Dis. 2007;1(1):e1.
  • Michels PAM, Bringaud F, Herman M, Hannaert V. Metabolic functions of glycosomes in trypanosomatids. Biochim Biophys Acta. 2006;1763(12):1463–1477.
  • Bakker BM, Michels PAM, Opperdoes FR, Westerhoff HV. What controls glycolysis in bloodstream form Trypanosoma brucei? J Biol Chem. 1999;274(21):14551–14559.
  • Beltran-Hortelano I, Alcolea V, Font M, Pérez-Silanes S. Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorg Med Chem. 2022;58:116577.
  • Espinoza-Fonseca LM, Trujillo-Ferrara JG. Exploring the possible binding sites at the interface of triosephosphate isomerase dimer as a potential target for anti-tripanosomal drug design. Bioorg Med Chem Lett. 2004;14(12):3151–3154.
  • Chavez-Calvillo R, Costas M, Hernández-Trujillo J. Theoretical analysis of intermolecular interactions of selected residues of triosephosphate isomerase from Trypanosoma cruzi with its inhibitor 3-(2-benzothiazolylthio)-1-propanesulfonic acid. Phys Chem Chem Phys. 2010;12(9):2067–2074.
  • Kurkcuoglu Z, Findik D, Akten ED, Doruker P. How an inhibitor bound to subunit interface alters triosephosphate isomerase dynamics. Biophys J. 2015;109(6):1169–1178.
  • Alvarez G, Aguirre-López B, Cabrera N, Marins EB, Tinoco L, Batthyány CI, de Gómez-Puyou MT, Puyou AG, Pérez-Montfort R, Cerecetto H, et al. 1,2,4-thiadiazol-5(4H)-ones: a new class of selective inhibitors of Trypanosoma cruzi triosephosphate isomerase. Study of the mechanism of inhibition. J Enzyme Inhib Med Chem. 2013;28(5):981–989. 2013
  • Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58.
  • Trindade JDS, Freire-de-Lima CG, Côrte-Real S, Decote-Ricardo D, Freire de Lima ME. Drug repurposing for Chagas disease: In vitro assessment of nimesulide against Trypanosoma cruzi and insights on its mechanisms of action. PLOS One. 2021;16(10):e0258292.
  • Pandey RP, Nascimento MS, Franco CH, Bortoluci K, Silva MN, Zingales B, Gibaldi D, Castaño Barrios L, Lannes-Vieira J, Cariste LM, et al. Drug repurposing in Chagas disease: chloroquine potentiates benznidazole activity against Trypanosoma cruzi in vitro and in vivo. Antimicrob Agents Chemother. 2022;66(11):e0028422
  • Spugnini EP, Fais S. Drug repurposing for anticancer therapies. A lesson from proton pump inhibitors. Expert Opinion on Therapeutic Patents. 2020;30(1):15–25. (2020)
  • Enríquez-Flores S, Flores-López LA, De la Mora-De la Mora I, García-Torres I, Gracia-Mora I, Gutiérrez-Castrellón P, Fernández-Lainez C, Martínez-Pérez Y, Olaya-Vargas A, de Vos P, et al. Naturally occurring deamidated triosephosphate isomerase is a promising target for cell-selective therapy in cancer. Sci Rep. 2022;12(1)
  • Fernández-Lainez C, de la Mora-de la Mora I, García-Torres I, Enríquez-Flores S, Flores-López L, Gutiérrez-Castrellón P, Yépez-Mulia L, Matadamas-Martínez F, de Vos P, López-Velázquez G, et al. Multilevel approach for the treatment of giardiasis by targeting arginine deiminase. IJMS. 2021;22(17):9491.
  • Martínez-Pérez Y, Nequiz-Avendaño M, García-Torres I, Gudiño-Zayas ME, López-Velázquez G, Enríquez-Flores S, Mendoza E, Saavedra E, Pérez-Tamayo R, León-Avila G, et al. Rabeprazole inhibits several functions of Entamoeba histolytica related with its virulence. Parasitol Res. 2020;119(10):3491–3502.
  • García-Torres I, de la Mora-de la Mora I, Marcial-Quino J, Gómez-Manzo S, Vanoye-Carlo A, Navarrete-Vázquez G, Colín-Lozano B, Gutiérrez-Castrellón P, Sierra-Palacios E, López-Velázquez G, et al. Proton pump inhibitors drastically modify triosephosphate isomerase from Giardia lamblia at functional and structural levels, providing molecular leads in the design of new antigiardiasic drugs. Biochim Biophys Acta. 2016;1860(1 Pt A):97–107.
  • Mishina YV, Krishna S, Haynes RK, Meade JC. Artemisinins inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense in vitro growth. Antimicrob Agents Chemother. 2007;51(5):1852–1854.
  • Jiang S, Meadows J, Anderson SA, Mukkada AJ. Antileishmanial activity of the antiulcer agent omeprazole. Antimicrob Agents Chemother. 2002; 46(8):2569–2574.
  • Hernández R, Cevallos AM, Nepomuceno-Mejía T, López-Villaseñor I. Stationary phase in Trypanosoma cruzi epimastigotes as a preadaptive stage for metacyclogenesis. Parasitol Res. 2012;111(2):509–514.
  • Morgan DML, Tetrazolium MTT. Assay for cellular viability and activity. Polyamine Protocols. 1998;79:179–184.
  • Gómez-Puyou A, Saavedra-Lira E, Becker I, Zubillaga RA, Rojo-Domínguez A, Perez-Montfort R. Using evolutionary changes to achieve species-specific inhibition of enzyme action—studies with triosephosphate isomerase. Chem Biol. 1995;2(12):847–855.
  • Gilbert RP, Brandt RB. Spectrophotometric determination of methyl glyoxal with 2,4-dinitrophenylhydrazine. Anal Chem. 1975;47(14):2418–2422.
  • López-Velázquez G, Fernández-Lainez C, de la Mora-de la Mora JI, Caudillo de la Portilla D, Reynoso-Robles R, González-Maciel A, Ridaura C, García-Torres I, Gutiérrez-Castrellón P, Olivos-García A, et al. On the molecular and cellular effects of omeprazole to further support its effectiveness as an antigiardial drug. Sci Rep. 2019;9(1)
  • Enríquez-Flores S, Rodríguez-Romero A, Hernández-Alcántara G, Oria-Hernández J, Gutiérrez-Castrellón P, Pérez-Hernández G, Mora I. d l M-d l, Castillo-Villanueva A, García-Torres I, Méndez ST, et al. Determining the molecular mechanism of inactivation by chemical modification of triosephosphate isomerase from the human parasite Giardia lamblia: A study for antiparasitic drug design. Proteins. 2011;79(9):2711–2724.
  • de la Mora-de la Mora I, Torres-Larios A, Enríquez-Flores S, Méndez S-T, Castillo-Villanueva A, Gómez-Manzo S, López-Velázquez G, Marcial-Quino J, Torres-Arroyo A, García-Torres I, et al. Structural effects of protein aging: terminal marking by deamidation in human triosephosphate isomerase. PLOS One. 2015;10(4):e0123379.
  • Enríquez-Flores S, De la Mora-De la Mora JI, Flores-López LA, Cabrera N, Fernández-Lainez C, Hernández-Alcántara G, Guerrero-Beltrán CE, López-Velázquez G, García-Torres I. Improved yield, stability, and cleavage reaction of a novel tobacco etch virus protease mutant. Appl Microbiol Biotechnol. 2022;106(4):1475–1492.
  • Ellman GL. A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys. 1958;74(2):443–450.
  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612.
  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791.
  • Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61(8):3891–3898.
  • Orosz F, Oláh J, Ovádi J. Triosephosphate isomerase deficiency: new insights into an enigmatic disease. Biochim Biophys Acta. 2009;1792(12):1168–1174.
  • Enríquez-Flores S, Flores-López LA, García-Torres I, de la Mora-de la Mora I, Cabrera N, Gutiérrez-Castrellón P, Martínez-Pérez Y, López-Velázquez G. Deamidated human triosephosphate isomerase is a promising druggable target. Biomolecules. 2020;10(7):1050.
  • Allaman I, Bélanger M, Magistretti PJ. Methylglyoxal, the dark side of glycolysis. Front Neurosci. 2015;9:23.
  • Henriquez DA, Perez N, Pance A, Bradley C. Mechanisms of protein degradation in Trypanosoma cruzi. Biol Res. 1993;26(1–2):151–157.
  • Haanstra JR, González-Marcano EB, Gualdrón-López M, Michels PA. Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochim Biophys Acta. 2016;1863(5):1038–1048.
  • González L, García-Huertas P, Triana-Chávez O, García GA, Murta SMF, Mejía-Jaramillo AM. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi. Mol Microbiol. 2017;106(5):704–718.
  • Téllez J, Romero I, Romanha AJ, Steindel M. Drug transporter and oxidative stress gene expression in human macrophages infected with benznidazole-sensitive and naturally benznidazole-resistant Trypanosoma cruzi parasites treated with benznidazole. Parasites Vectors. 2019;12(1):262
  • Gómez-Ochoa SA, Rojas LZ, Echeverría LE, Muka T, Franco OH. Global, regional, and national trends of chagas disease from 1990 to 2019: comprehensive analysis of the global burden of disease study. Glob Heart. 2022;17(1):59.
  • Carlier Y, Altcheh J, Angheben A, Freilij H, Luquetti AO, Schijman AG, Segovia M, Wagner N, Albajar Vinas P. Congenital Chagas disease: updated recommendations for prevention, diagnosis, treatment, and follow-up of newborns and siblings, girls, women of childbearing age, and pregnant women. PLOS Negl Trop Dis. 2019;13(10):e0007694.
  • Suzuki K, Doki K, Homma M, Tamaki H, Hori S, Ohtani H, Sawada Y, Kohda Y. Co-administration of proton pump inhibitors delays elimination of plasma methotrexate in high-dose methotrexate therapy. Br J Clin Pharmacol. 2009;67(1):44–49.
  • Lugini L, Federici C, Borghi M, Azzarito T, Marino ML, Cesolini A, Spugnini EP, Fais S. Proton pump inhibitors while belonging to the same family of generic drugs show different anti-tumor effect. J Enzyme Inhib Med Chem. 2016;31(4):538–545.
  • Reyes-Vivas H, de la Mora-de la Mora I, Castillo-Villanueva A, Yépez-Mulia L, Hernández-Alcántara G, Figueroa-Salazar R, García-Torres I, Gómez-Manzo S, Méndez ST, Vanoye-Carlo A, et al. Giardial triosephosphate isomerase as possible target of the cytotoxic effect of omeprazole in Giardia lamblia. Antimicrob Agents Chemother. 2014;58(12):7072–7082.
  • Gupta Y, Goicoechea S, Romero JG, Mathur R, Caulfield TR, Becker DP, Durvasula R, Kempaiah P. Repurposing lansoprazole and posaconazole to treat leishmaniasis: Integration of in vitro testing, pharmacological corroboration, and mechanisms of action. J Food Drug Anal. 2022;30(1):128–149.
  • De Milito A, Canese R, Marino ML, Borghi M, Iero M, Villa A, Venturi G, Lozupone F, Iessi E, Logozzi M, et al. pH‐dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer. 2010;127(1):207–219.
  • Li Z, He P, Long Y, Yuan G, Shen W, Chen Z, Zhang B, Wang Y, Yue D, Seidl C, et al. Drug repurposing of pantoprazole and vitamin C targeting tumor microenvironment conditions improves anticancer effect in metastatic castration-resistant prostate cancer. Front Oncol. 2021;11:660320.
  • Hou Y, Hu Q, Huang J, Xiong H. Omeprazole inhibits cell proliferation and induces G0/G1 cell cycle arrest through up-regulating miR-203a-3p expression in Barrett’s esophagus cells. Front Pharmacol. 2017;8:968.
  • Matsui MS, Petris MJ, Niki Y, Karaman-Jurukovska N, Muizzuddin N, Ichihashi M, Yarosh DB. Omeprazole, a gastric proton pump inhibitor, inhibits melanogenesis by blocking ATP7A trafficking. J Invest Dermatol. 2015;135(3):834–841.
  • Kromer W, Krüger U, Huber R, Hartmann M, Steinijans VW. Differences in pH-dependent activation rates of substituted benzimidazoles and biological in vitro correlates. Pharmacology. 1998;56(2):57–70.
  • Schnoll-Sussman F, Niec R, Katz PO. Proton Pump Inhibitors. Gastrointest Endosc Clin N Am. 2020;30(2):239–251.
  • Riel MA, Kyle DE, Bhattacharjee AK, Milhous WK. Efficacy of proton pump inhibitor drugs against Plasmodium falciparum in vitro and their probable pharmacophores. Antimicrob Agents Chemother. 2002;46(8):2627–2632.
  • García-Torres I, De la Mora-De la Mora I, Hernández-Alcántara G, Molina-Ortiz D, Caballero-Salazar S, Olivos-García A, Nava G, López-Velázquez G, Enríquez-Flores S. First characterization of a microsporidial triosephosphate isomerase and the biochemical mechanisms of its inactivation to propose a new druggable target. Sci Rep. 2018;8(1):8591.
  • García-Huertas P, Cardona-Castro N. Advances in the treatment of Chagas disease: promising new drugs, plants and targets. Biomed Pharmacother. 2021;142:112020.
  • Revollo S, Oury B, Vela A, Tibayrenc M, Sereno D. In vitro benznidazole and nifurtimox susceptibility profile of Trypanosoma cruzi strains belonging to discrete typing units TcI, TcII, and TcV. Pathogens. 2019;8(4):197.
  • Herrera-Mayorga V, Lara-Ramírez E, Chacón-Vargas K, Aguirre-Alvarado C, Rodríguez-Páez L, Alcántara-Farfán V, Cordero-Martínez J, Nogueda-Torres B, Reyes-Espinosa F, Bocanegra-García V, et al. Structure-based virtual screening and in vitro evaluation of new Trypanosoma cruzi Cruzain inhibitors. IJMS. 2019;20(7):1742.
  • Adasme MF, Bolz SN, Adelmann L, Salentin S, Haupt VJ, Moreno-Rodríguez A, Nogueda-Torres B, Castillo-Campos V, Yepez-Mulia L, De Fuentes-Vicente JA, et al. Repositioned drugs for chagas disease unveiled via structure-based drug repositioning. IJMS. 2020;21(22):8809.
  • Sanz-Rodríguez CE, Concepción JL, Pekerar S, Oldfield E, Urbina JA. Bisphosphonates as inhibitors of Trypanosoma cruzi hexokinase. J Biol Chem. 2007;282(17):12377–12387.
  • Vela A, Coral-Almeida M, Sereno D, Costales JA, Barnabé C, Brenière SF. In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: a systematic review and meta-analysis. PLOS Negl Trop Dis. 2021;15(3):e0009269.
  • Defrise-Quertain F, Fraser-L'Hostis C, Coral D, Deshusses J. Kinetic study of the plasma-membrane potential in procyclic and bloodstream forms of Trypanosoma brucei brucei using the fluorescent probe bisoxonol. The Biochemical Journal. 1996;314(2):595–601.
  • Trujillo C, Blumenthal A, Marrero J, Rhee KY, Schnappinger D, Ehrt S. Triosephosphate isomerase is dispensable in vitro yet essential for Mycobacterium tuberculosis to establish infection. mBio. 2014;5(2):e00085.
  • Nomura W, Aoki M, Inoue Y. Toxicity of dihydroxyacetone is exerted through the formation of methylglyoxal in Saccharomyces cerevisiae: effects on actin polarity and nuclear division. Biochem J. 2018;475(16):2637–2652.
  • Nokin M-J, Durieux F, Bellier J, Peulen O, Uchida K, Spiegel DA, Cochrane JR, Hutton CA, Castronovo V, Bellahcène A, et al. Hormetic potential of methylglyoxal, a side-product of glycolysis, in switching tumours from growth to death. Sci Rep. 2017;7(1):11722.
  • Greig N, Wyllie S, Patterson S, Fairlamb AH. A comparative study of methylglyoxal metabolism in trypanosomatids. Febs J. 2009;276(2):376–386.
  • Kuzan A. Toxicity of advanced glycation end products (Review). Biomed Rep. 2021;14(5):46.
  • Uzcátegui NL, Carmona-Gutiérrez D, Denninger V, Schoenfeld C, Lang F, Figarella K, Duszenko M. Antiproliferative effect of dihydroxyacetone on Trypanosoma brucei bloodstream forms: cell cycle progression, subcellular alterations, and cell death. Antimicrob Agents Chemother. 2007;51(11):3960–3968.
  • Herman M, Pérez-Morga D, Schtickzelle N, Michels PAM. Turnover of glycosomes during life-cycle differentiation of Trypanosoma brucei. Autophagy. 2008;4(3):294–308.
  • Dos Anjos DO, Sobral Alves ES, Gonçalves VT, Fontes SS, Nogueira ML, Suarez-Fontes AM, Neves da Costa JB, Rios-Santos F, Vannier-Santos MA. Effects of a novel β–lapachone derivative on Trypanosoma cruzi: parasite death involving apoptosis, autophagy and necrosis. Int J Parasitol Drugs Drug Resist. 2016;6(3):207–219.
  • Tan Q, Wang M, Yu M, Zhang J, Bristow RG, Hill RP, Tannock IF. Role of autophagy as a survival mechanism for hypoxic cells in tumors. Neoplasia. 2016;18(6):347–355.
  • Kurkcuoglu Z, Ural G, Demet Akten E, Doruker P. Blind dockings of benzothiazoles to multiple receptor conformations of triosephosphate isomerase from Trypanosoma cruzi and human. Mol Inform. 2011;30(11–12):986–995.