785
Views
1
CrossRef citations to date
0
Altmetric
Rapid Communication

Microtiter plate-based chemistry and in situ screening: SuFEx-enabled lead discovery of selective AChE inhibitors

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Article: 2237213 | Received 18 May 2023, Accepted 11 Jul 2023, Published online: 28 Jul 2023

References

  • Liu Z, Li J, Li S, Li G, Sharpless KB, Wu P. SuFEx click chemistry enabled late-stage drug functionalization. J Am Chem Soc. 2018;140(8):2919–2925.
  • Marra A, Dong J, Ma T, Giuntini S, Crescenzo E, Cerofolini L, Martinucci M, Luchinat C, Fragai M, Nativi C, et al. Protein glycosylation through sulfur fluoride exchange (SuFEx) chemistry: the key role of a fluorosulfate thiolactoside. Chemistry. 2018;24(71):18981–18987.
  • Qin H-L, Zheng Q, Bare GAL, Wu P, Sharpless KB. A heck-matsuda process for the synthesis of beta-arylethenesulfonyl fluorides: selectively addressable bis-electrophiles for SuFEx click chemistry. Angew Chem Int Ed Engl. 2016;55(45):14155–14158.
  • Li S, Wu P, Moses JE, Sharpless KB. Multidimensional SuFEx click chemistry: sequential sulfur(VI) fluoride exchange connections of diverse modules launched from an SOF4 hub. Angew Chem Int Ed Engl. 2017;56(11):2903–2908.
  • Zhao C, Rakesh KP, Ravidar L, Fang W-Y, Qin H-L. Pharmaceutical and medicinal significance of sulfur (SVI)-containing motifs for drug discovery: a critical review. Eur J Med Chem. 2019;162:679–734.
  • Oakdale JS, Kwisnek L, Fokin VV. Selective and orthogonal post-polymerization modification using sulfur(VI) fluoride exchange (SuFEx) and copper-catalyzed azide–alkyne cycloaddition (CuAAC) reactions. Macromolecules. 2016;49(12):4473–4479.
  • Dong J, Krasnova L, Finn MG, Sharpless KB. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew Chem Int Ed Engl. 2014;53(36):9430–9448.
  • Schimler SD, Cismesia MA, Hanley PS, Froese RDJ, Jansma MJ, Bland DC, Sanford MS. Nucleophilic deoxyfluorination of phenols via aryl fluorosulfonate intermediates. J Am Chem Soc. 2017;139(4):1452–1455.
  • Zelli R, Tommasone S, Dumy P, Marra A, Dondoni A. A click ligation based on SuFEx for the metal-free synthesis of sugar and iminosugar clusters. Eur J Org Chem. 2016;2016(30):5102–5116.
  • Supuran CT. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites. 2017;7:48.
  • Capasso C, Supuran CT. Sulfa and trimethoprim-like drugs – antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J Enzyme Inhib Med Chem. 2014;29(3):379–387.
  • Brik A, Lin Y-C, Elder J, Wong C-H. A quick diversity-oriented amide-forming reaction to optimize P-subsite residues of HIV protease inhibitors. Chem Biol. 2002;9(8):891–896.
  • Zhang Z, Zhang S-L, Wu C, Li H-H, Zha L, Shi J, Liu X, Qin H-L, Tang W. Sulfur-fluoride exchange (SuFEx)-enabled lead discovery of AChE inhibitors by fragment linking strategies. Eur J Med Chem. 2023;257:115502.
  • Mamidyala SK, Finn MG. In situ click chemistry: probing the binding landscapes of biological molecules. Chem Soc Rev. 2010;39(4):1252–1261.
  • Davies P, Maloney A. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;2(8000):1403.
  • Masson P, Froment MT, Bartels CF, Lockridge O. Asp 7O in the peripheral anionic site of human butyrylcholinesterase. Eur J Biochem. 1996;235(1–2):36–48.
  • Li Q, He S, Chen Y, Feng F, Qu W, Sun H. Donepezil based multi-functional cholinesterase inhibitors for treatment of Alzheimer’s disease. Eur J Med Chem. 2018;158:463–477.
  • Jiang X, Zhang Z, Zuo J, Wu C, Zha L, Xu Y, Wang S, Shi J, Liu X-H, Zhang J, et al. Novel cannabidiol-carbamate hybrids as selective BuChE inhibitors: Docking-based fragment reassembly for the development of potential therapeutic agents against Alzheimer’s disease. Eur J Med Chem. 2021; 223:113735.
  • Shadrack WL, Qin HL, Tang HL. Transition metal-free regioselective synthesis of triazolyl aliphatic sulfonyl fluorides. Tetrahedron. 2021;98:132425.
  • Wu C, Zhang G, Zhang Z-W, Jiang X, Zhang Z, Li H, Qin H-L, Tang W. Structure–activity relationship, in vitro and in vivo evaluation of novel dienyl sulphonyl fluorides as selective BuChE inhibitors for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem. 2021;36(1):1860–1873.
  • Fu Y, Zhang D, Kang T, Guo Y-Y, Chen W-G, Gao S, Ye F. Fragment splicing-based design, synthesis and safener activity of novel substituted phenyl oxazole derivatives. Bioorg Med Chem Lett. 2019;29(4):570–576.
  • Akıncıoğlu H, Gülçin İ. Potent acetylcholinesterase inhibitors: potential drugs for Alzheimer’s disease. Mini Rev Med Chem. 2020;20(8):703–715.
  • Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase inhibitors in the treatment of neurodegenerative diseases and the role of acetylcholinesterase in their pathogenesis. Int J Mol Sci. 2021;22:9290.
  • de Almeida JSFD, Dolezal R, Krejcar O, Kuca K, Musilek K, Jun D, França TCC. Molecular modeling studies on the interactions of aflatoxin B1 and its metabolites with human acetylcholinesterase. II. Interactions with the catalytic anionic site (CAS). Toxins (Basel). 2018;10:389.
  • Ordentlich A, Barak D, Kronman C, Flashner Y, Leitner M, Segall Y, Ariel N, Cohen S, Velan B, Shafferman A, et al. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J Biol Chem. 1993;268(23):17083–17095.
  • Joubert J, Kapp E. Discovery of 9-phenylacridinediones as highly selective butyrylcholinesterase inhibitors through structure-based virtual screening. Bioorg Med Chem Lett. 2020;30(9):127075.
  • de Andrade P, Mantoani SP, Gonçalves Nunes PS, Magadán CR, Pérez C, Xavier DJ, Hojo ETS, Campillo NE, Martínez A, Carvalho I, et al. Highly potent and selective aryl-1,2,3-triazolyl benzylpiperidine inhibitors toward butyrylcholinesterase in Alzheimer’s disease. Bioorg Med Chem. 2019;27(6):931–943.
  • Lee SG, Chmielewski J. Rapid synthesis and in situ screening of potent HIV-1 protease dimerization inhibitors. Chem Biol. 2006;13(4):421–426.
  • Wu C-Y, Chang C-F, Chen JS-Y, Wong C-H, Lin C-H. Rapid diversity-oriented synthesis in microtiter plates for in situ screening: discovery of potent and selective alpha-fucosidase inhibitors. Angew Chem Int Ed Engl. 2003;42(38):4661–4664.
  • Liang F-S, Brik A, Lin Y-C, Elder JH, Wong C-H. Epoxide opening in water and screening in situ for rapid discovery of enzyme inhibitors in microtiter plates. Bioorg Med Chem. 2006;14(4):1058–1062.
  • Jahnke W, Erlanson DA, de Esch IJP, Johnson CN, Mortenson PN, Ochi Y, Urushima T. Fragment-to-lead medicinal chemistry publications in 2019. J Med Chem. 2020;63(24):15494–15507.
  • Nagar S, Argikar UA, Tweedie DJ. Enzyme kinetics in drug metabolism: fundamentals and applications. Methods Mol Biol. 2014;1113:1–6.
  • Larik FA, Shah MS, Saeed A, Shah HS, Channar PA, Bolte M, Iqbal J. New cholinesterase inhibitors for Alzheimer’s disease: structure activity relationship, kinetics and molecular docking studies of 1-butanoyl-3-arylthiourea derivatives. Int J Biol Macromol. 2018;116:144–150.
  • Park JW, Ha YM, Moon K-m, Kim S-r, Jeong HO, Park YJ, Lee HJ, Park JY, Song YM, Chun P, et al. De novo tyrosinase inhibitor: 4-(6,7-dihydro-5H-indeno[5,6-d]thiazol-2-yl)-benzene-1,3-diol (MHY1556). Bioorg Med Chem Lett. 2013;23(14):4172–4176.
  • Tada H, Shiho O, Kuroshima K, Koyama M, Tsukamoto K. An improved colorimetric assay for interleukin 2. J Immunol Methods. 1986;93(2):157–165.
  • Liu J, Zhang L, Liu D, Li B, Zhang M. Neuroprotective effects of extracts from the radix curcuma aromatica on H2O2-induced damage in PC12 cells. Comb Chem High Throughput Screen. 2018;21(8):571–582.
  • Hajialyani M, Hosein Farzaei M, Echeverría J, et al. Hesperidin as a neuroprotective agent: a review of animal and clinical evidence. Molecules. 2019;24:648.
  • Di L, Kerns EH, Bezar IF, Petusky SL, Huang Y. Comparison of blood–brain barrier permeability assays: in situ brain perfusion, MDR1-MDCKII and PAMPA-BBB. J Pharm Sci. 2009;98(6):1980–1991.
  • Di L, Kerns EH, Fan K, McConnell OJ, Carter GT. High throughput artificial membrane permeability assay for blood-brain barrier. Eur J Med Chem. 2003;38(3):223–232.
  • Takeda S, Hashimoto T, Roe AD, Hori Y, Spires-Jones TL, Hyman BT. Brain interstitial oligomeric amyloid increases with age and is resistant to clearance from brain in a mouse model of Alzheimer’s disease. FASEB J. 2013;27(8):3239–3248.
  • Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141(7):1917–1933.