1,156
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design, synthesis, and biological evaluation of thiazole/thiadiazole carboxamide scaffold-based derivatives as potential c-Met kinase inhibitors for cancer treatment

, ORCID Icon, &
Article: 2247183 | Received 11 May 2023, Accepted 07 Aug 2023, Published online: 29 Aug 2023

References

  • WHO; 2023. https://www.who.int/en/news-room/fact-sheets/detail/cancer.
  • Lu X, Smaill JB, Ding K. Medicinal chemistry strategies for the development of kinase inhibitors targeting point mutations. J Med Chem. 2020;63(19):10726–10741.
  • Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem. 2021;216:113318.
  • Lu X, Smaill JB, Ding K. New promise and opportunities for allosteric kinase inhibitors. Angew Chem Int Ed Engl. 2020;59(33):13764–13776.
  • Liu G-H, Chen T, Zhang X, Ma X-L, Shi H-S. Small molecule inhibitors targeting the cancers. MedComm. 2022;3(4):e181.
  • Ayala-Aguilera CC, Valero T, Lorente-Macías Á, Baillache DJ, Croke S, Unciti-Broceta A. Small molecule kinase inhibitor drugs (1995–2021): medical indication, pharmacology, and synthesis. J Med Chem. 2022;65(2):1047–1131.
  • Giordano S, Ponzetto C, Renzo MFD, Cooper CS, Comoglio PM. Tyrosine kinase receptor indistinguishable from the c-met protein. Nature. 1989;339(6220):155–156.
  • Dean M, Park M, Le Beau MM, Robins TS, Diaz MO, Rowley JD, Blair DG, Vande Woude GF. The human met oncogene is related to the tyrosine kinase oncogenes. Nature. 1985;318(6044):385–388.
  • Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251(4995):802–804.
  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–925.
  • Parikh PK, Ghate MD. Recent advances in the discovery of small molecule c-Met kinase inhibitors. Eur J Med Chem. 2018;143:1103–1138.
  • Cui JJ. Targeting receptor tyrosine kinase MET in cancer: small molecule inhibitors and clinical progress. J Med Chem. 2014;57(11):4427–4453.
  • Cui JJ, Tran-Dubé M, Shen H, Nambu M, Kung P-P, Pairish M, Jia L, Meng J, Funk L, Botrous I, et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal–epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011;54(18):6342–6363.
  • Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna PK, Bhutani H, Paul AT, Kumar R. U.S. FDA approved drugs from 2015–June 2020: a perspective. J Med Chem. 2021;64(5):2339–2381.
  • Jia H, Dai G, Weng J, Zhang Z, Wang Q, Zhou F, Jiao L, Cui Y, Ren Y, Fan S, et al. Discovery of (S)-1-(1-(imidazo[1,2-a]pyridin-6-yl)ethyl)-6-(1-methyl-1H-pyrazol-4-yl)-1H-[1,2,3]triazolo[4,5-b]pyrazine (volitinib) as a highly potent and selective mesenchymal–epithelial transition factor (c-Met) inhibitor in clinical development for treatment of cancer. J Med Chem. 2014;57(18):7577–7589.
  • Elisei R, Schlumberger MJ, Müller SP, Schöffski P, Brose MS, Shah MH, Licitra L, Jarzab B, Medvedev V, Kreissl MC, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol. 2013;31(29):3639–3646.
  • Heist RS, Sequist LV, Borger D, Gainor JF, Arellano RS, Le LP, Dias-Santagata D, Clark JW, Engelman JA, Shaw AT, et al. Acquired resistance to crizotinib in NSCLC with MET exon 14 skipping. J Thorac Oncol. 2016;11(8):1242–1245.
  • Frigault MM, Markovets A, Nuttall B, Kim K-M, Park SH, Gangolli EA, Mortimer PGS, Hollingsworth SJ, Hong JY, Kim K, et al. Mechanisms of acquired resistance to savolitinib, a selective MET inhibitor in MET-amplified gastric cancer. JCO Precis Oncol. 2020;4:222–232.
  • Recondo G, Bahcall M, Spurr LF, Che J, Ricciuti B, Leonardi GC, Lo Y-C, Li YY, Lamberti G, Nguyen T, et al. Molecular mechanisms of acquired resistance to MET tyrosine kinase inhibitors in patients with MET exon 14–mutant NSCLC. Clin Cancer Res. 2020;26(11):2615–2625.
  • Underiner TL, Herbertz T, Miknyoczki SJ. Discovery of small molecule c-Met inhibitors: evolution and profiles of clinical candidates. Anticancer Agents Med Chem. 2010;10(1):7–27.
  • Wang Z, Shi J, Zhu X, Zhao W, Gong Y, Hao X, Hou Y, Liu Y, Ding S, Liu J, et al. Design, synthesis and biological evaluation of novel 4-phenoxypyridine based 3-oxo-3,4-dihydroquinoxaline-2-carboxamide derivatives as potential c-Met kinase inhibitors. Bioorg Chem. 2020;105:104371.
  • Nan X, Jiang Y-F, Li H-J, Wang J-H, Wu Y-C. Design, synthesis and evaluation of sulfonylurea containing 4-phenoxyquinolines as highly selective c-Met kinase inhibitors. Bioorg Med Chem. 2019;27(13):2801–2812.
  • Collie GW, Barlind L, Bazzaz S, Börjesson U, Dale IL, Disch JS, Habeshian S, Jetson R, Khurana P, Madin A, et al. Discovery of a selective c-MET inhibitor with a novel binding mode. Bioorg Med Chem Lett. 2022;75:128948.
  • Wang M-S, Xu H-C, Gong Y, Qu R-Y, Zhuo L-S, Huang W. Efficient arylation of 2,7-naphthyridin-1(2H)-one with diaryliodonium salts and discovery of a new selective MET/AXL kinase inhibitor. ACS Comb Sci. 2020;22(9):457–467.
  • Hu H, Chen F, Dong Y, Liu Y, Gong P. Discovery of novel dual c-Met/HDAC inhibitors as a promising strategy for cancer therapy. Bioorg Chem. 2020;101:103970.
  • Hu H, Chen F, Dong Y, Li M, Xu S, Qin M, Gong P. Discovery of novel c-mesenchymal–epithelia transition factor and histone deacetylase dual inhibitors. Eur J Med Chem. 2020;204:112651.
  • Zhai X, Bao G, Wang L, Cheng M, Zhao M, Zhao S, Zhou H, Gong P. Design, synthesis and biological evaluation of novel 4-phenoxy-6,7-disubstituted quinolines possessing (thio)semicarbazones as c-Met kinase inhibitors. Bioorg Med Chem. 2016;24(6):1331–1345.
  • Liu L, Norman MH, Lee M, Xi N, Siegmund A, Boezio AA, Booker S, Choquette D, D'Angelo ND, Germain J, et al. Structure-based design of novel class II c-Met inhibitors: 2. SAR and kinase selectivity profiles of the pyrazolone series. J Med Chem. 2012;55(5):1868–1897.
  • Nan X, Li H-J, Fang S-B, Li Q-Y, Wu Y-C. Structure-based discovery of novel 4-(2-fluorophenoxy)quinoline derivatives as c-Met inhibitors using isocyanide-involved multicomponent reactions. Eur J Med Chem. 2020;193:112241.
  • Nan X, Zhang J, Li H-J, Wu R, Fang S-B, Zhang Z-Z, Wu Y-C. Design, synthesis and biological evaluation of novel N-sulfonylamidine-based derivatives as c-Met inhibitors via Cu catalyzed three-component reaction. Eur J Med Chem. 2020;200:112470.
  • Schroeder GM, An Y, Cai Z-W, Chen X-T, Clark C, Cornelius LAM, Dai J, Gullo-Brown J, Gupta A, Henley B, et al. Discovery of N-(4-(2-amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a selective and orally efficacious inhibitor of the Met kinase superfamily. J Med Chem. 2009;52(5):1251–1254.
  • Liu L, Siegmund A, Xi N, Kaplan-Lefko P, Rex K, Chen A, Lin J, Moriguchi J, Berry L, Huang L, et al. Discovery of a potent, selective, and orally bioavailable c-Met inhibitor: 1-(2-hydroxy-2-methylpropyl)-N-(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458). J Med Chem. 2008;51(13):3688–3691.
  • Chen X, Shu C, Li W, Hou Q, Luo G, Yang K, Wu X. Discovery of a novel Src homology 2 domain containing protein tyrosine phosphatase 2 (SHP2) and cyclin-dependent kinase 4 (CDK4) dual inhibitor for the treatment of triple-negative breast cancer. J Med Chem. 2022;65(9):6729–6747.
  • Kumari S, Carmona AV, Tiwari AK, Trippier PC. Amide bond bioisosteres: strategies, synthesis, and successes. J Med Chem. 2020;63(21):12290–12358.
  • Majumdar P, Pati A, Patra M, Behera RK, Behera AK. Acid hydrazides, potent reagents for synthesis of oxygen, nitrogen, and/or sulfur-containing heterocyclic rings. Chem Rev. 2014;114(5):2942–2977.
  • Cascioferro S, Parrino B, Carbone D, Schillaci D, Giovannetti E, Cirrincione G, Diana P. Thiazoles, their benzofused systems, and thiazolidinone derivatives: versatile and promising tools to combat antibiotic resistance. J Med Chem. 2020;63(15):7923–7956.
  • Dawood KM, Farghaly TA. Thiadiazole inhibitors: a patent review. Expert Opin Ther Pat. 2017;27(4):477–505.
  • Altıntop MD, Ciftci HI, Radwan MO, Sever B, Kaplancıklı ZA, Ali TFS, Koga R, Fujita M, Otsuka M, Özdemir A. Design, synthesis, and biological evaluation of novel 1,3,4-tiadiazole derivatives as potential antitumor agents against chronic myelogenous leukemia: striking effect of nitrothiazole moiety. Molecules. 2018;23(1):59.
  • Janowska S, Khylyuk D, Bielawska A, Szymanowska A, Gornowicz A, Bielawski K, Noworól J, Mandziuk S, Wujec M. New 1,3,4-thiadiazole derivatives with anticancer activity. Molecules. 2022;27(6):1814.
  • Morigi R, Locatelli A, Leoni A, Rambaldi M. Recent patents on thiazole derivatives endowed with antitumor activity. Recent Pat Anticancer Drug Discov. 2015;10(3):280–297.
  • Davison EK, Sperry J. Natural products with heteroatom-rich ring systems. J Nat Prod. 2017;80(11):3060–3079.
  • Pomeislová A, Otmar M, Rubešová P, Benýšek J, Matoušová M, Mertlíková-Kaiserová H, Pohl R, Poštová Slavětínská L, Pomeisl K, Krečmerová M, et al. 1,2,4-Thiadiazole acyclic nucleoside phosphonates as inhibitors of cysteine dependent enzymes cathepsin K and GSK-3β. Bioorg Med Chem. 2021;32:115998.
  • Farghaly TA, Abbas EMH, Al-Soliemy AM, Sabour R, Shaaban MR. Novel sulfonyl thiazolyl-hydrazone derivatives as EGFR inhibitors: design, synthesis, biological evaluation and molecular docking studies. Bioorg Chem. 2022;121:105684.
  • Orujova T, Ece A, Akalın Çiftçi G, Özdemir A, Altıntop MD. A new series of thiazole‐hydrazone hybrids for Akt‐targeted therapy of non‐small cell lung cancer. Drug Dev Res. 2023;84(2):185–199.
  • Ayati A, Emami S, Asadipour A, Shafiee A, Foroumadi A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur J Med Chem. 2015;97:699–718.
  • Sharma PC, Bansal KK, Sharma A, Sharma D, Deep A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur J Med Chem. 2020;188:112016.
  • Elewa AM, Jayakumar J, Huang Y-W, Elsayed MH, Chang C-L, Ting L-Y, Lin W-C, Chueh C-C, Chou H-H. Biaxially extended side-chain conjugation of benzodithiophene-based polymer dots for superior photocatalytic stability under visible-light irradiation. J Environ Chem Eng. 2022;10(1):106927.
  • Qi B, Mi B, Zhai X, Xu Z, Zhang X, Tian Z, Gong P. Discovery and optimization of novel 4-phenoxy-6,7-disubstituted quinolines possessing semicarbazones as c-Met kinase inhibitors. Bioorg Med Chem. 2013;21(17):5246–5260.
  • Wang L, Xu S, Liu X, Chen X, Xiong H, Hou S, Zou W, Tang Q, Zheng P, Zhu W, et al. Discovery of thinopyrimidine–triazole conjugates as c-Met targeting and apoptosis inducing agents. Bioorg Chem. 2018;77:370–380.
  • Claridge S, Raeppel F, Granger M-C, Bernstein N, Saavedra O, Zhan L, Llewellyn D, Wahhab A, Deziel R, Rahil J, et al. Discovery of a novel and potent series of thieno[3,2-b]pyridine-based inhibitors of c-Met and VEGFR2 tyrosine kinases. Bioorg Med Chem Lett. 2008;18(9):2793–2798.
  • Tan L, Zhang Z, Gao D, Chan S, Luo J, Tu Z-C, Zhang Z-M, Ding K, Ren X, Lu X, et al. Quinolone antibiotic derivatives as new selective Axl kinase inhibitors. Eur J Med Chem. 2019;166:318–327.
  • Ogasawara D, Ichu T-A, Vartabedian VF, Benthuysen J, Jing H, Reed A, Ulanovskaya OA, Hulce JJ, Roberts A, Brown S, et al. Selective blockade of the lyso-PS lipase ABHD12 stimulates immune responses in vivo. Nat Chem Biol. 2018;14(12):1099–1108.
  • Howe RK, Gruner TA, Franz JE. Nitrile sulfides. Synthesis of 5-aryl-1,2,4-thiadiazole-3-carboxylates. J Org Chem. 1977;42(10):1813–1814.
  • Fordyce EAF, Morrison AJ, Sharp RD, Paton RM. Microwave-induced generation and reactions of nitrile sulfides: an improved method for the synthesis of isothiazoles and 1,2,4-thiadiazoles. Tetrahedron. 2010;66(35):7192–7197.
  • Liu M, Liang Y, Zhu Z, Wang J, Cheng X, Cheng J, Xu B, Li R, Liu X, Wang Y, et al. Discovery of novel aryl carboxamide derivatives as hypoxia-inducible factor 1α signaling inhibitors with potent activities of anticancer metastasis. J Med Chem. 2019;62(20):9299–9314.
  • Schäfer G, Fleischer T, Ahmetovic M, Abele S. Development of a scalable route for a key thiadiazole building block via sequential Sandmeyer bromination and room temperature Suzuki–Miyaura coupling. Org Process Res Dev. 2020;24(2):228–234.
  • Li Z, Chen Y, Zhou Z, Deng L, Xu Y, Hu L, Liu B, Zhang L. Discovery of first-in-class thiazole-based dual FFA1/PPARδ agonists as potential anti-diabetic agents. Eur J Med Chem. 2019;164:352–365.
  • Günther M, Lategahn J, Juchum M, Döring E, Keul M, Engel J, Tumbrink HL, Rauh D, Laufer S. Trisubstituted pyridinylimidazoles as potent inhibitors of the clinically resistant L858R/T790M/C797S EGFR mutant: targeting of both hydrophobic regions and the phosphate binding site. J Med Chem. 2017;60(13):5613–5637.
  • Haydon PG, Lee J. Uridine nucleoside derivatives, compositions and methods of use. WO2018058148-Al; 2018.
  • Sybo B, Bradley P, Grubb A, Miller S, Proctor KJW, Clowes L, Lawrie MR, Sampson P, Seed AJ. 1,3,4-Thiadiazole-2-carboxylate esters: new synthetic methodology for the preparation of an elusive family of self-organizing materials. J Mater Chem. 2007;17(32):3406–3411.
  • Feng W, Zhang B, Zhao H, Zhang Y, Li Y, Chen Z, Liu B, Cao X. c-Met inhibitor SGX523-induced apoptosis of breast cancer cells MDA-MB-231. Chin J Clin Oncol. 2012;39(2):61–64.
  • Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7(6):504–516.
  • Munshi N, Jeay S, Li Y, Chen C-R, France DS, Ashwell MA, Hill J, Moussa MM, Leggett DS, Li CJ, et al. ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther. 2010;9(6):1544–1553.