872
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Design, synthesis and evaluation of dihydro-1H-indene derivatives as novel tubulin polymerisation inhibitors with anti-angiogenic and antitumor potency

, , , , & ORCID Icon
Article: 2247579 | Received 18 May 2023, Accepted 08 Aug 2023, Published online: 17 Aug 2023

References

  • Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4(4):253–265.
  • Penna LS, Henriques JAP, Bonatto D. Anti-mitotic agents: are they emerging molecules for cancer treatment? Pharmacol Ther. 2017;173:67–82.
  • Islam MN, Iskander MN. Microtubulin binding sites as target for developing anticancer agents. Mini Rev Med Chem. 2004;4(10):1077–1104.
  • Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov. 2010;9(10):790–803.
  • Mühlethaler T, Gioia D, Prota AE, Sharpe ME, Cavalli A, Steinmetz MO. Comprehensive analysis of binding sites in tubulin. Angew Chem Int Ed Engl. 2021;60(24):13331–13342.
  • Shuai W, Wang G, Zhang Y, Bu F, Zhang S, Miller DD, Li W, Ouyang L, Wang Y. Recent progress on tubulin inhibitors with dual targeting capabilities for cancer therapy. J Med Chem. 2021;64(12):7963–7990.
  • Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: activity, chemoresistance and its overcoming. Drug Resist Updat. 2021;54:100742.
  • Martino E, Casamassima G, Castiglione S, Cellupica E, Pantalone S, Papagni F, Rui M, Siciliano AM, Collina S. Vinca alkaloids and analogues as anti-cancer agents: looking back, peering ahead. Bioorg Med Chem Lett. 2018;28(17):2816–2826.
  • Barbuti AM, Chen ZS. Paclitaxel through the ages of anticancer therapy: exploring its role in chemoresistance and radiation therapy. Cancers). 2015;7(4):2360–2371.
  • Liao D, Zhang W, Gupta P, Lei ZN, Wang JQ, Cai CY, Vera AA, Zhang L, Chen ZS, Yang DH. Tetrandrine interaction with ABCB1 reverses multidrug resistance in cancer cells through competition with anti-cancer drugs followed by downregulation of ABCB1 expression. Molecules. 2019;24(23):4383.
  • Das T, Anand U, Pandey SK, Ashby CR, Jr., Assaraf YG, Chen ZS, Dey A. Therapeutic strategies to overcome taxane resistance in cancer. Drug Resist Updat. 2021;55:100754.
  • Wang J, Miller DD, Li W. Molecular interactions at the colchicine binding site in tubulin: an X-ray crystallography perspective. Drug Discov Today. 2022;27(3):759–776.
  • Lu Y, Chen J, Xiao M, Li W, Miller DD. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res. 2012;29(11):2943–2971.
  • Tan L, Wu C, Zhang J, Yu Q, Wang X, Zhang L, Ge M, Wang Z, Ouyang L, Wang Y. Design, synthesis, and biological evaluation of heterocyclic-fused pyrimidine chemotypes guided by X-ray crystal structure with potential antitumor and anti-multidrug resistance efficacy targeting the colchicine binding site. J Med Chem. 2023;66(5):3588–3620.
  • Sun M, Zhang Y, Qin J, Ba M, Yao Y, Duan Y, Liu H, Yu D. Synthesis and biological evaluation of new 2-methoxyestradiol derivatives: Potent inhibitors of angiogenesis and tubulin polymerization. Bioorg Chem. 2021;113:104988.
  • Liu Z, Huang L, Zhou T, Chang X, Yang Y, Shi Y, Hao M, Li Z, Wu Y, Guan Q, et al. A novel tubulin inhibitor, 6h, suppresses tumor-associated angiogenesis and shows potent antitumor activity against non-small cell lung cancers. J Biol Chem. 2022;298(7):102063.
  • Yao Y, Huang T, Wang Y, Wang L, Feng S, Cheng W, Yang L, Duan Y. Angiogenesis and anti-leukaemia activity of novel indole derivatives as potent colchicine binding site inhibitors. J Enzyme Inhib Med Chem. 2022;37(1):652–665.
  • Zhu H, Li W, Shuai W, Liu Y, Yang L, Tan Y, Zheng T, Yao H, Xu J, Zhu Z, et al. Discovery of novel N-benzylbenzamide derivatives as tubulin polymerization inhibitors with potent antitumor activities. Eur J Med Chem. 2021;216:113316.
  • Grosios K, Holwell SE, McGown AT, Pettit GR, Bibby MC. In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug. Br J Cancer. 1999;81(8):1318–1327.
  • Tron GC, Pirali T, Sorba G, Pagliai F, Busacca S, Genazzani AA. Medicinal chemistry of combretastatin A4: present and future directions. J Med Chem. 2006;49(11):3033–3044.
  • Gaspari R, Prota AE, Bargsten K, Cavalli A, Steinmetz MO. Structural basis of cis- and trans-combretastatin binding to tubulin. Chem. 2017;2(1):102–113.
  • Aprile S, Del Grosso E, Tron GC, Grosa G. In vitro metabolism study of combretastatin A-4 in rat and human liver microsomes. Drug Metab Dispos. 2007;35(12):2252–2261.
  • Li W, Sun H, Xu S, Zhu Z, Xu J. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Future Med Chem. 2017;9(15):1765–1794.
  • Messaoudi S, Tréguier B, Hamze A, Provot O, Peyrat JF, De Losada JR, Liu JM, Bignon J, Wdzieczak-Bakala J, Thoret S, et al. Isocombretastatins a versus combretastatins a: the forgotten isoCA-4 isomer as a highly promising cytotoxic and antitubulin agent. J Med Chem. 2009;52(14):4538–4542.
  • Chen J, Ahn S, Wang J, Lu Y, Dalton JT, Miller DD, Li W. Discovery of novel 2-aryl-4-benzoyl-imidazole (ABI-III) analogues targeting tubulin polymerization as antiproliferative agents. J Med Chem. 2012;55(16):7285–7289.
  • Schwikkard S, Whitmore H, Sishtla K, Sulaiman RS, Shetty T, Basavarajappa HD, Waller C, Alqahtani A, Frankemoelle L, Chapman A, et al. The antiangiogenic activity of naturally occurring and synthetic homoisoflavonoids from the hyacinthaceae (sensu APGII). J Nat Prod. 2019;82(5):1227–1239.
  • Galli U, Travelli C, Aprile S, Arrigoni E, Torretta S, Grosa G, Massarotti A, Sorba G, Canonico PL, Genazzani AA, et al. Design, synthesis, and biological evaluation of combretabenzodiazepines: a novel class of anti-tubulin agents. J Med Chem. 2015;58(3):1345–1357.
  • Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29(6 Suppl 16):15–18.
  • Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6(6):449–458.
  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62.
  • Jayson GC, Kerbel R, Ellis LM, Harris AL. Antiangiogenic therapy in oncology: current status and future directions. Lancet. 2016;388(10043):518–529.
  • Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, Carey MS, Beale P, Cervantes A, Kurzeder C, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365(26):2484–2496.
  • El-Naggar AM, Hassan AMA, Elkaeed EB, Alesawy MS, Al-Karmalawy AA. Design, synthesis, and SAR studies of novel 4-methoxyphenyl pyrazole and pyrimidine derivatives as potential dual tyrosine kinase inhibitors targeting both EGFR and VEGFR-2. Bioorg Chem. 2022;123:105770.
  • El-Naggar AM, Hemdan MM, Atta-Allah SR. An efficient one-pot synthesis of new Coumarin derivatives as potent anticancer agents under microwave irradiation. J Heterocyclic Chem. 2017;54(6):3519–3526.
  • Al-Muntaser SM, Al-Karmalawy AA, El-Naggar AM, Ali AK, Abd El-Sattar NEA, Abbass EM. Novel 4-thiophenyl-pyrazole, pyridine, and pyrimidine derivatives as potential antitumor candidates targeting both EGFR and VEGFR-2; design, synthesis, biological evaluations, and in silico studies. RSC Adv. 2023;13(18):12184–12203.
  • Tozer GM, Kanthou C, Parkins CS, Hill SA. The biology of the combretastatins as tumour vascular targeting agents. Int J Exp Pathol. 2002;83(1):21–38.
  • Pérez-Pérez MJ, Priego EM, Bueno O, Martins MS, Canela MD, Liekens S. Blocking blood flow to solid tumors by destabilizing tubulin: an approach to targeting tumor growth. J Med Chem. 2016;59(19):8685–8711.
  • Li W, Sun H, Xu F, Shuai W, Liu J, Xu S, Yao H, Ma C, Zhu Z, Xu J. Synthesis, molecular properties prediction and biological evaluation of indole-vinyl sulfone derivatives as novel tubulin polymerization inhibitors targeting the colchicine binding site, Bioorg. Bioorg Chem. 2019;85:49–59.
  • Li W, Xu F, Shuai W, Sun H, Yao H, Ma C, Xu S, Yao H, Zhu Z, Yang D-H, et al. Discovery of novel quinoline–chalcone derivatives as potent antitumor agents with microtubule polymerization inhibitory activity. J Med Chem. 2019;62(2):993–1013.
  • Li W, Shuai W, Xu F, Sun H, Xu S, Yao H, Liu J, Yao H, Zhu Z, Xu J. Discovery of novel 4-arylisochromenes as anticancer agents inhibiting tubulin polymerization. ACS Med Chem Lett. 2018;9(10):974–979.
  • Zhu H, Sun H, Liu Y, Duan Y, Liu J, Yang X, Li W, Qin S, Xu S, Zhu Z, et al. Design, synthesis and biological evaluation of vinyl selenone derivatives as novel microtubule polymerization inhibitors. Eur J Med Chem. 2020;207:112716.
  • Hu X, Li L, Zhang Q, Wang Q, Feng Z, Xu Y, Xia Y, Yu L. Design, synthesis and biological evaluation of a novel tubulin inhibitor SKLB0565 targeting the colchicine binding site. Bioorg Chem. 2020;97:103695.
  • Peng X, Ren Y, Pan W, Liu J, Chen J. Discovery of novel acridane-based tubulin polymerization inhibitors with anticancer and potential immunomodulatory effects. J Med Chem. 2023;66(1):627–640.
  • Buolamwini JK. Cell cycle molecular targets in novel anticancer drug discovery. Curr Pharm Des. 2000;6(4):379–392.
  • Leng J, Zhao Y, Sheng P, Xia Y, Chen T, Zhao S, Xie S, Yan X, Wang X, Yin Y, et al. Discovery of novel N-heterocyclic-fused deoxypodophyllotoxin analogues as tubulin polymerization inhibitors targeting the colchicine-binding site for cancer treatment. J Med Chem. 2022;65(24):16774–16800.
  • Suhail Y, Cain MP, Vanaja K, Kurywchak PA, Levchenko A, Kalluri R., Kshitiz, Systems biology of cancer metastasis. Cell Syst. 2019;9(2):109–127.
  • Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Sig Transduct Target Ther. 2020;5(1):28.
  • Sana S, Reddy VG, Reddy TS, Tokala R, Kumar R, Bhargava SK, Shankaraiah N. Cinnamide derived pyrimidine-benzimidazole hybrids as tubulin inhibitors: synthesis, in silico and cell growth inhibition studies. Bioorg Chem. 2021;110:104765.
  • Parupalli R, Akunuri R, Spandana A, Phanindranath R, Pyreddy S, Bazaz MR, Vadakattu M, Joshi SV, Bujji S, Gorre B, et al. Synthesis and biological evaluation of 1-phenyl-4,6-dihydrobenzo[b]pyrazolo[3,4-d]azepin-5(1H)-one/thiones as anticancer agents. Bioorg Chem. 2023;135:106478.
  • Huang W, Wu Y, Cheng D, He Z. Mechanism of epithelial‑mesenchymal transition inhibited by miR‑203 in non‑small cell lung cancer. Oncol Rep. 2020;43(2):437–446.
  • Sana S, Reddy VG, Bhandari S, Reddy TS, Tokala R, Sakla AP, Bhargava SK, Shankaraiah N. Exploration of carbamide derived pyrimidine-thioindole conjugates as potential VEGFR-2 inhibitors with anti-angiogenesis effect. Eur J Med Chem. 2020;200:112457.
  • Zhu H, Tan Y, He C, Liu Y, Duan Y, Zhu W, Zheng T, Li D, Xu J, Yang DH, et al. Discovery of a novel vascular disrupting agent inhibiting tubulin polymerization and HDACs with potent antitumor effects. J Med Chem. 2022;65(16):11187–11213.