675
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The NMR studies of CMP inhibition of polysialylation

, , , , , , , , & show all
Article: 2248411 | Received 15 Apr 2023, Accepted 09 Aug 2023, Published online: 24 Aug 2023

References

  • Li M, Wenig BM. Adrenal oncocytic pheochromocytoma. Am J Surg Pathol. 2000;24(11):1552–1557.
  • Al Jishi AA, Lach B, Elgheriani A, Kachur E, Cenic A. Primary supratentorial intracerebral malignant paraganglioma. Neuroimmunol Neuroinflammation. 2015;2(2):121–126.
  • Varki A, Cummings R, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al. 2008 Essentials of glycobiology. New York(NY):Cold Spring Harbor.
  • Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev. 2014;94(2):461–518.
  • Finne J. Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain. J Biol Chem. 1982;257(20):11966–11970.
  • Chen X, Varki A. ‘Advances in the biology and chemistry of sialic acids. ACS Chem Biol. 2010;5(2):163–176.
  • Colley KJ, Kitajima K, Sato C. Polysialic acid: biosynthesis, novel functions and applications. Crit Rev Biochem Mol Biol. 2014;49(6):498–532.
  • Harduin-Lepers A. Comprehensive analysis of sialyltransferases in vertebrate genomes. Glycobiol Insights. 2010;2:29–61.
  • Troy FA. II, Polysialylation: from bacteria to brains. Glycobiology. 1992;2(1):5–23.
  • Troy FA. II, Sialobiology and the polysialic acid glycotope: occurrence, structure, function, synthesis and glycopathology. In: Rosenberg. A, editor. Biology of the Sialic Acids. New York NY:Plennum Press; 1995. p. 95–144.
  • Livingston BD, Jacobs JL, Glick MC, Troy IIFA. Extended polysialic acid chains (n greater than 55) in glycoproteins from human neuroblastoma cells. J.Biol. Chem. 1988;263(19):9443–9448. PMID 3288635.
  • Lipinski M, Hirsch MR, Deagostini-Bazin H, Yamada O, Tursz T, Goridis C. Characterization of neural cell adhesion molecules (NCAM) expressed by Ewing and neuroblastoma cell lines. Int J Cancer. 1987;40(1):81–86.
  • Troy FA. II, Polysialic acid in molecular medicine. J Biol Chem. 2004;3:407–414.
  • Sevigny MB, Ye J, Kitazume-Kawaguchi S, Troy FA. II, Developmental expression and characterization of the α2,8-polysialyltransferase activity in embryonic chick brain. Glycobiology. 1998;8(9):857–867.
  • Zhu X, Chen Y, Zhang N, Zheng Z, Zhao F, Liu N, Lv C, Troy FA, Wang B. Molecular characterization and expression analyses of ST8Sia II and IV in piglets during postnatal development: lack of correlation between transcription and posttranslational levels. Glycoconj J. 2015;32(9):715–728.
  • Rodriguez L. In vitro synthesis of colominic acid by membrane-bound sialyltransferase of Escherichia coli K-235. Kinetic properties of this enzyme and inhibition by CMP and other cytidine nucleotides. Eur J Biochem. 1989;178:741–749.
  • Datta AK, Paulson JC. Carbohydrates, lipids, and other natural products. The sialyltransferase ‘Sialylmotif’ participates in binding the donor substrate CMP-NeuAc. J Biol Chem. 1995;270(4):1497–1500.
  • Falconer RA, Errington RJ, Snyder SD, Smith PJ, Patterson LH. Polysialyltransferase: a new target in metastatic cancer. Curr Cancer Drug Targets. 2012;12:925–939.
  • Kauskot A, Pascreau T, Adam F, Bruneel A, Reperant C, Lourenco-Rodrigues M-D, Rosa J-P, Petermann R, Maurey H, Auditeau C, et al. A mutation in the gene coding for the sialic acid transporter SLC35A1 is required for platelet life span but not proplatelet formation. Haematologica. 2018;103(12):e613–e617.
  • Parker JL, Newstead S. Gateway to the golgi:molecular mechanisms of nucleotide sugar transporters. Curr Opin Struct Biol. 2019;57:127–134.
  • Parker JL, Newstead S. Structural basis of nucleotide sugar transport across the golgi membrane. Nature. 2017;551(7681):521–524.
  • Eckhardt M, Gotza B, Gerardy-Schahn R. Mutants of the CMP-sialic acid transporter causing the Lec2 phenotype. J Biol Chem. 1998;273(32):20189–20195.
  • Aoki K, Ishida N, Kawakita M. Substrate recognition by nucleotide sugar transporters: further characterization of substrate recognition regions by analyses of UDP-galactose/CMP-sialic acid transporter chimeras and biochemical analysis of the substrate specificity of parental and chimeric transporters. J Biol Chem. 2003;278(25):22887–22893.
  • Aoki K, Ishida N, Kawakita M. Substrate recognition by UDP- galactose and CMP-sialic acid transporters. Different sets of transmembrane helices are utilized for the specific recognition of UDP-galactose and CMP-sialic acid. J Biol Chem. 2001;276(24):21555–21561.
  • Angata K, Suzuki M, McAuliffe J, Ding Y, Hindsgaul O, Fukuda M. Differential biosynthesis of polysialic acid on neural cell adhesion molecule (NCAM) and oligosaccharide acceptors by three distinct alpha 2,8-sialyltransferases, ST8Sia IV (PST), ST8Sia II (STX), and ST8Sia III. J Biol Chem. 2000;275(24):18594–18601.
  • Rosenberg A. The Beginnings of Sialic Acid. Biology of the Sialic Acids; Berlin, Germany:Springer; 1995; p. 1–5.
  • Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Essentials of Glycobiology, 2nd ed. NY, USA: Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 2009. p. 199–216.
  • Drake P, Nathan J, Stock C, Chang P, Muench M, Nakata D, Reader R, Gip P, Golden K, Weinhold B, et al. The highly restricted glycan, polysialic acid, is differentially expressed on human and murine leukocytes and modulated immune response. J Immunol. 2008;181(10):6850–6858.
  • Nakata D, Zhang L, Troy FA. II, Molecular basis for polysialylation: a nove polybasic polysialyltransferase domain (PSTD) of 32 amino acids unique to the α2,8-polysialyltransferases is essential for polysialylation. Glycoconj J. 2006;23(5-6):423–436.
  • Liao SM, Lu B, Liu XH, et al. Molecular interactions of the polysialyltransferase domain (PSTD) in ST8Sia IV with CMP-Sialic acid and polysialic acid required for polysialylation of the neural cell adhesion molecule proteins: an NMR study. Int J Mol Sci. 2020;21(5):1590.
  • Zhou GP, Troy FA. II. NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology. 2005;15(4):347–359.
  • Zhou GP, Troy FA. II. NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure. Curr Protein Pept Sci. 2005;6(5):399–411.
  • Zhou GP, Huang RB, Troy FA. II. 3D structural conformation and functional domains of polysialyltransferase ST8Sia IV required for polysialylation of neural cell adhesion molecules. Protein Pept Lett. 2015;22(2):137–148.
  • Huang RB, Chen D, Liao SM, Lu B, Wang QY, Xie NZ, Troy FA, Ii; Zhou GP. The intrinsic relationship between structure and function of the sialyltransferase ST8Sia family members. Curr. Top. Med. Chem. 2017;17:2465–2475.
  • Zhou GP, Liao SM, Chen D, Huang RB. The cooperative effect between polybasic region (PBR) and polysialyltransferase domain (PSTD) within tumor-target polysialyltransferase ST8SiaII. Curr Top Med Chem. 2019;19(31):2831–2841.
  • Lu B, Liu X-H, Liao S-M, Lu Z-L, Chen D, Troy Ii FA, Huang R-B, Zhou G-P. A possible modulation mechanism of intramolecular and intermolecular interactions for NCAM polysialylation and cell migration. Curr Top Med Chem. 2019;19(25):2271–2282.
  • Peng LX, Liu XH, Lu B, Liao SM, Huang JM, Zhou F, Chen D, Troy FA, II, Huang RB, Zhou GP. The inhibition of polysialyltransferase ST8SiaIV through heparin binding to polysialyltransferase domain (PSTD). MC. 2019;15(5):486–495.
  • Miyazaki T, Kiyohiko Angata K, Seeberger PH, Hindsgaul O, Fukuda M. CMP substitutions preferentially inhibit polysialic acid synthesis. Glycobiology. 2008;18(2):187–194.
  • Vaynberg J, Qin J. Weak protein–protein interactions as probed by NMR spectroscopy. Trends Biotechnol. 2006;24(1):22–27.
  • Bhide GP, Prehna G, Ramirez BE, Colley KJ. The polybasic region of the polysialyltransferase ST8Sia-IV binds directly to the neural cell adhesion molecule, NCAM. Biochemistry. 2017;56(10):1504–1517.
  • Liu XH, Lu B, Peng LX, Liao SM, Zhou F, Chen D, Lu ZL, Zhou GP, Huang RB. The NMR structure of the polysialyltranseferase domain (PSTD) in polysialyltransferase. https://doi.org/10.2210/pdb6AHZ/pdb
  • Al-Saraireh YMJ, Sutherland M, Springett BR, Freiberger F, Ribeiro Morais G, Loadman PM, Errington RJ, Smith PJ, Fukuda M, Gerardy-Schahn R, et al. Pharmacological inhibition of polysialyltransferase ST8SiaII modulates tumour cell migration. PloS One. 2013;8(8):8e73366.
  • Wang L, Liu Y, Wu L, Sun XL. Sialyltransferase inhibition and recent advances. Biochim Biophys Acta. 2016;1864(1):143–153.
  • Pietanza MC, Byers LA, Minna JD, Rudin CM. Small cell lung cancer: will recent progress lead to improved outcomes? Clin Cancer Res. 2015;21(10):2244-he ex–2255.
  • Zhou GP, Huang RB. The graphical studies of the major molecular interactions for neural cell adhesion molecule (NCAM) polysialylation by incorporating Wenxiang Diagram into NMR spectroscopy. Int J Mol Sci. 2022;23(23):15128.
  • Sato C, Kitajima K. Disialic, oligosialic and polysialic acids: distribution, functions and related disease. J Biochem. 2013;154(2):115–136.
  • Mühlenhoff M, Eckhardt M, Gerardy-Schahn R. Polysialic acid: three-dimensional structure, biosynthesis and function. Curr Opin Struct Biol. 1998;8(5):558–564.
  • Schauer R, Kamerling JP. Exploration of the sialic acid world. In: Baker DC, editor. Advances in carbohydrate chemistry and biochemistry. Philadelphia (PA): Elsevier; 2018, p. 1–213.
  • Zhang R, Loers G, Schachner M, Boelens R, Wienk H, Siebert S, Eckert T, Kraan S, Rojas-Macias MA, LüTteke T, et al. Molecular basis of the receptor interactions of polysialic acid (polySia), polySia mimetics and sulphated polysaccharides. ChemMedChem. 2016;11(9):990–1002.