1,150
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Insights into the inhibitory activities of neolignans and diarylnonanoid derivatives from nutmeg (Myristica fragrans Houtt.) seeds on soluble epoxide hydrolase using in vitro and in silico approaches

, , , &
Article: 2251099 | Received 22 Jun 2023, Accepted 18 Aug 2023, Published online: 28 Aug 2023

References

  • Atone J, Wagner K, Hashimoto K, Hammock BD. Cytochrome P450 derived epoxidized fatty acids as a therapeutic tool against neuroinflammatory diseases. Prostaglandins Other Lipid Mediat. 2020;147:106385.
  • Lukin A, Kramer J, Hartmann M, Weizel L, Hernandez-Olmos V, Falahati K, Burghardt I, Kalinchenkova N, Bagnyukova D, Zhurilo N, et al. Discovery of polar spirocyclic orally bioavailable urea inhibitors of soluble epoxide hydrolase. Bioorg Chem. 2018;80:655–667.
  • Spector AA, Fang X, Snyder GD, Weintraub NL. Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog Lipid Res. 2004;43(1):55–90.
  • Fretland AJ, Omiecinski CJ. Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact. 2000;129(1–2):41–59.
  • Huang H, Weng J, Wang M-H. EETs/sEH in diabetes and obesity-induced cardiovascular diseases. Prostaglandins Other Lipid Mediat. 2016;125:80–89.
  • Briggs WH, Xiao H, Parkin KL, Shen C, Goldman IL. Differential inhibition of human platelet aggregation by selected Allium thiosulfinates. J Agric Food Chem. 2000;48(11):5731–5735.
  • Halade GV, Lee DH. Inflammation and resolution signaling in cardiac repair and heart failure. eBioMedicine. 2022;79:103992.
  • Gur Maz T, Koc B, Jordan PM, İbiş K, Çalışkan B, Werz O, Banoglu E. Benzoxazolone-5-urea derivatives as human soluble epoxide hydrolase (sEH) inhibitors. ACS Omega. 2023;8(2):2445–2454.
  • Imig JD, Carpenter MA, Shaw S. The soluble epoxide hydrolase inhibitor AR9281 decreases blood pressure, ameliorates renal injury and improves vascular function in hypertension. Pharmaceuticals). 2009;2(3):217–227.
  • Kim JH, Park JS, Lee YJ, Choi S, Kim YH, Yang SY. Inhibition of soluble epoxide hydrolase by phytochemical constituents of the root bark of Ulmus davidiana var. japonica. J Enzyme Inhib Med Chem. 2021;36(1):1049–1055.
  • Phong NV, Zhao Y, Min BS, Yang SY, Kim JA. Inhibitory activity of bioactive phloroglucinols from the rhizomes of Dryopteris crassirhizoma on Escherichia coli β-glucuronidase: kinetic analysis and molecular docking studies. Metabolites. 2022;12(10):938.
  • Ha MT, Vu NK, Tran TH, Kim JA, Woo MH, Min BS. Phytochemical and pharmacological properties of Myristica fragrans Houtt.: an updated review. Arch Pharm Res. 2020;43(11):1067–1092.
  • Lee C-J, Huang C-W, Chen L-G, Wang C-C. (+)-Erythro-Δ8′-7S,8R-dihydroxy-3,3′,5′-trimethoxy-8-O-4′-neolignan, an anti-acne component in degreasing Myristica fragrans Houtt. Molecules. 2020;25(19):4563.
  • Barceloux DG. Nutmeg (Myristica fragrans Houtt.). Dis Mon. 2009;55(6):373–379.
  • Cao G-Y, Xu W, Yang X-W, Gonzalez FJ, Li F. New neolignans from the seeds of Myristica fragrans that inhibit nitric oxide production. Food Chem. 2015;173(:231–237.
  • Wang CY, Lee S, Jang H-J, Su XD, Wang H-S, Kim YH, Yang SY. Inhibition potential of phenolic constituents from the aerial parts of Tetrastigma hemsleyanum against soluble epoxide hydrolase and nitric oxide synthase. J Enzyme Inhib Med Chem. 2019;34(1):753–760.
  • Jiang J-x, Guan Y, Shen H-j, Jia Y-l, Shen J, Zhang L-h, Liu Q, Zhu Y-l, Xie Q-m. Inhibition of soluble epoxide hydrolase attenuates airway remodeling in a chronic asthma model. Eur J Pharmacol. 2020;868:172874.
  • Tanaka D, Tsuda Y, Shiyama T, Nishimura T, Chiyo N, Tominaga Y, Sawada N, Mimoto T, Kusunose N. A practical use of ligand efficiency indices out of the fragment-based approach: ligand efficiency-guided lead identification of soluble epoxide hydrolase inhibitors. J Med Chem. 2011;54(3):851–857.
  • Eawsakul K, Ongtanasup T, Ngamdokmai N, Bunluepuech K. Alpha-glucosidase inhibitory activities of astilbin contained in Bauhinia strychnifolia Craib. stems: an investigation by in silico and in vitro studies. BMC Complement Med Ther. 2023;23(1):25.
  • Ongtanasup T, Prommee N, Jampa O, Limcharoen T, Wanmasae S, Nissapatorn V, Paul AK, Pereira ML, Wilairatana P, Nasongkla N, et al. The cholesterol-modulating effect of the new herbal medicinal recipe from yellow vine (Coscinium fenestratum (Goetgh.)), ginger (Zingiber officinale Roscoe.), and safflower (Carthamus tinctorius L.) on suppressing PCSK9 expression to upregulate LDLR expression in HepG2 cells. Plants. 2022;11(14):1835.
  • Nasongkla N, Tuchinda P, Munyoo B, Eawsakul K. Preparation and characterization of MUC-30-loaded polymeric micelles against MCF-7 cell lines using molecular docking methods and in vitro study. Evid Based Complement Alternat Med. 2021;2021:5597681–5597689.
  • Phong NV, Anh DTN, Chae HY, Yang SY, Kwon MJ, Min BS, Kim JA. Anti-inflammatory activity and cytotoxicity against ovarian cancer cell lines by amide alkaloids and piperic esters isolated from Piper longum fruits: In vitro assessments and molecular docking simulation. Bioorg Chem. 2022;128:106072.
  • Khoa NM, Phong NV, Yang SY, Min BS, Kim JA. Spectroscopic analysis, kinetic mechanism, computational docking, and molecular dynamics of active metabolites from the aerial parts of Astragalus membranaceus Bunge as tyrosinase inhibitors. Bioorg Chem. 2023;134:106464.
  • Li F, Yang X-W. Biotransformation of myrislignan by rat liver microsomes in vitro. Phytochemistry. 2008;69(3):765–771.
  • Duan L, Tao H-W, Hao X, Gu Q-Q, Zhu W-M. Cytotoxic and antioxidative phenolic compounds from the traditional Chinese medicinal plant, Myristica fragrans. Planta Med. 2009;75(11):1241–1245.
  • Zacchino SA, Badano H. Enantioselective synthesis and absolute configuration assignment of erythro(3,4,5-trimethoxy-7-hydroxy-1′-allyl-2′, 6′-dimethoxy)-8.0.4′-neolignan, isolated from mace (Myristica fragrans). J Nat Prod. 1988;51(6):1261–1265.
  • Rye CE, Barker D. Asymmetric synthesis and anti-protozoal activity of the 8,4′-oxyneolignans virolin, surinamensin and analogues. Eur J Med Chem. 2013;60:240–248.
  • Hattori M, Hada S, Shu Y-Z, Kakiuchi N, Namba T. New acyclic bis-phenylpropanoids from the aril of Myristica fragrans. Chem Pharm Bull. 1987;35(2):668–674.
  • Francis SK, James B, Varughese S, Nair MS. Phytochemical investigation on Myristica fragrans stem bark. Nat Prod Res. 2019;33(8):1204–1208.
  • Morikawa T, Hachiman I, Matsuo K, Nishida E, Ninomiya K, Hayakawa T, Yoshie O, Muraoka O, Nakayama T. Neolignans from the arils of Myristica fragrans as potent antagonists of CC chemokine receptor 3. J Nat Prod. 2016;79(8):2005–2013.
  • Olajide OA, Ajayi FF, Ekhelar AI, Awe SO, Makinde JM, Alada ARA. Biological effects of Myristica fragrans (nutmeg) extract. Phytother Res. 1999;13(4):344–345.
  • Kasahara H, Miyazawa M, Kameoka H. Biotransformation of an acyclic neolignan in rats. Phytochemistry. 1995;38(2):343–346.
  • Kundu K, Nayak SK. Total syntheses of malabaricones B and C via a cross-metathesis strategy. J Nat Prod. 2017;80(6):1776–1782.
  • Besombes S, Robert D, Utille J-P, Taravel FR, Mazeau K. Molecular modeling of syringyl and p-hydroxyphenyl β-O-4 dimers. Comparative study of the computed and experimental conformational properties of lignin β-O-4 model compounds. J Agric Food Chem. 2003;51(1):34–42.
  • Arnoldi A, Merlini L. Asymmetric synthesis of 3-methyl-2-phenyl-1,4-benzodioxanes. Absolute configuration of the neolignans eusiderin and eusiderin C and D. J Chem Soc, Perkin Trans 1. 1985;17:2555–2557.
  • Hada S, Hattori M, Tezuka Y, Kikuchi T, Namba T. New neolignans and lignans from the aril of Myristica fragrans. Phytochemistry. 1988;27(2):563–568.
  • Gao X, Shen Y, Yang L, Shu L, Li G, Hu Q-F. 8-O-4′-neolignans from flower buds of Magnolia fargesii and their biological activities. J Braz Chem Soc. 2012;23(7):1274–1279.
  • Morikawa T, Hachiman I, Ninomiya K, Hata H, Sugawara K, Muraoka O, Matsuda H. Degranulation inhibitors from the arils of Myristica fragrans in antigen-stimulated rat basophilic leukemia cells. J Nat Med. 2018;72(2):464–473.
  • Di Bari L, Pescitelli G, Pratelli C, Pini D, Salvadori P. Determination of absolute configuration of acyclic 1,2-diols with Mo2(OAc)4. 1. Snatzke’s method revisited. J Org Chem. 2001;66(14):4819–4825.
  • Huong PTM, Phong NV, Huong NT, Trang DT, Thao DT, Cuong NX, Nam NH, Van Thanh N. Aplydactylonins A-C, three new sesquiterpenes from the Vietnamese sea hare Aplysia dactylomela and their cytotoxicity. J Nat Med. 2022;76(1):210–219.
  • Whiteley CG. Enzyme kinetics: partial and complete non-competitive inhibition. Biochem Educ. 1999;27(1):15–18.
  • Dixon M. The determination of enzyme inhibitor constants. Biochem J. 1953;55(1):170–171.
  • Bzówka M, Mitusińska K, Hopko K, Góra A. Computational insights into the known inhibitors of human soluble epoxide hydrolase. Drug Discov Today. 2021;26(8):1914–1921.
  • Zhao W-Y, Yan J-J, Zhang M, Wang C, Feng L, Lv X, Huo X-K, Sun C-P, Chen L-X, Ma X-C. Natural soluble epoxide hydrolase inhibitors from Inula britanica and their potential interactions with soluble epoxide hydrolase: insight from inhibition kinetics and molecular dynamics. Chem Biol Interact. 2021;345:109571.
  • Gomez GA, Morisseau C, Hammock BD, Christianson DW. Structure of human epoxide hydrolase reveals mechanistic inferences on bifunctional catalysis in epoxide and phosphate ester hydrolysis. Biochemistry. 2004;43(16):4716–4723.
  • Qiu Q, Abis G, Mattingly-Peck F, Lynham S, Fraternali F, Conte MR. Allosteric regulation of the soluble epoxide hydrolase by nitro fatty acids: a combined experimental and computational approach. J Mol Biol. 2022;434(17):167600.
  • Jo AR, Kim JH, Yan X-T, Yang SY, Kim YH. Soluble epoxide hydrolase inhibitory components from Rheum undulatum and in silico approach. J Enzyme Inhib Med Chem. 2016;31(sup2):70–78.
  • Phong NV, Yang SY, Min BS, Kim JA. Insights into the inhibitory activity and mechanism of action of flavonoids from the stems and branches of Acer mono Maxim. against α-glucosidase via kinetic analysis, molecular docking, and molecular dynamics simulations. J Mol Struct. 2023;1282:135188.
  • Ashiru MA, Ogunyemi SO, Temionu OR, Ajibare AC, Cicero-Mfon NC, Ihekuna OA, Jagun MO, Abdulmumin L, Adisa QK, Asibor YE, et al. Identification of EGFR inhibitors as potential agents for cancer therapy: pharmacophore-based modeling, molecular docking, and molecular dynamics investigations. J Mol Model. 2023;29(5):128.
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25.
  • Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL. Quantifying the chemical beauty of drugs. Nat Chem. 2012;4(2):90–98.
  • Ongtanasup T, Wanmasae S, Srisang S, Manaspon C, Net-Anong S, Eawsakul K. In silico investigation of ACE2 and the main protease of SARS-CoV-2 with phytochemicals from Myristica fragrans (Houtt.) for the discovery of a novel COVID-19 drug. Saudi J Biol Sci. 2022;29(9):103389.
  • Ongtanasup T, Mazumder A, Dwivedi A, Eawsakul K. Homology modeling, molecular docking, molecular dynamic simulation, and drug-likeness of the modified alpha-mangostin against the β-tubulin protein of Acanthamoeba keratitis. Molecules. 2022;27(19):6338.
  • Meng F, Xi Y, Huang J, Ayers PW. A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors. Sci Data. 2021;8(1):289.