1,056
Views
1
CrossRef citations to date
0
Altmetric
Research Article

New spiro-indeno[1,2-b]quinoxalines clubbed with benzimidazole scaffold as CDK2 inhibitors for halting non-small cell lung cancer; stereoselective synthesis, molecular dynamics and structural insights

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2281260 | Received 25 Sep 2023, Accepted 05 Nov 2023, Published online: 23 Nov 2023

References

  • Horiuchi D, Huskey NE, Kusdra L, Wohlbold L, Merrick KA, Zhang C, Creasman KJ, Shokat KM, Fisher RP, Goga A. Chemical-genetic analysis of cyclin dependent kinase 2 function reveals an important role in cellular transformation by multiple oncogenic pathways. Proc Natl Acad Sci USA. 2012;109(17):E1019–E1027.
  • Tetsu O, McCormick F. Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell. 2003;3(3):233–245.
  • Yang L, Fang D, Chen H, Lu Y, Dong Z, Ding HF, Jing Q, Su SB, Huang S. Cyclin-dependent kinase 2 is an ideal target for ovary tumors with elevated cyclin E1 expression. Oncotarget. 2015;6(25):20801–20812.
  • Sun H, Yin M, Hao D, Shen Y. Anti-cancer activity of Catechin against A549 Lung Carcinoma cells by induction of cyclin kinase inhibitor p21 and suppression of cyclin E1 and P–AKT. Appl Sci. 2020;10(6):2065.
  • Ullah MA, Farzana M, Islam MS, Moni R, Zohora US, Rahman MS. Identification of the prognostic and therapeutic values of cyclin E1 (CCNE1) gene expression in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma: a database mining approach. Heliyon. 2022; 8(9):e10367.
  • Barriere C, Santamaria D, Cerqueira A, Galan J, Martin A, Ortega S, Malumbres M, Dubus P, Barbacid M. Mice thrive without Cdk4 and Cdk2. Mol Oncol. 2007;1(1):72–83.
  • Beale G, Haagensen EJ, Thomas HD, Wang LZ, Revill CH, Payne SL, Golding BT, Hardcastle IR, Newell DR, Griffin RJ, et al. Combined PI3K and CDK2 inhibition induces cell death and enhances in vivo antitumour activity in colorectal cancer. Br J Cancer. 2016;115(6):682–690.
  • Bolin S, Borgenvik A, Persson CU, Sundstrom A, Qi J, Bradner JE, Weiss WA, Cho YJ, Weishaupt H, Swartling FJ. Combined BET Bromodomain and CDK2 inhibition in MYC-driven medulloblastoma. Oncogene. 2018;37(21):2850–2862.
  • Stefanikova A, Klacanova K, Pilchova I, Hatok J, Racay P. Cyclin-dependent Kinase 2 inhibitor SU9516 increases sensitivity of colorectal carcinoma cells Caco-2 but not HT29 to BH3 Mimetic ABT-737. Gen Physiol Biophys. 2017;36(5):539–547.
  • Whittaker SR, Barlow C, Martin MP, Mancusi C, Wagner S, Self A, Barrie E, Te Poele R, Sharp S, Brown N, et al. Molecular profiling and combinatorial activity of CCT068127: a potent CDK2 and CDK9 inhibitor. Mol Oncol. 2018;12(3):287–304.
  • Azimi A, Caramuta S, Seashore-Ludlow B, Bostrom J, Robinson JL, Edfors F, Tuominen R, Kemper K, Krijgsman O, Peeper DS, et al. Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors. Mol Syst Biol. 2018;14(3):e7858.
  • Herrera-Abreu MT, Palafox M, Asghar U, Rivas MA, Cutts RJ, Garcia-Murillas I, Pearson A, Guzman M, Rodriguez O, Grueso J, et al. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res. 2016;76(8):2301–2313.
  • Pernas S, Tolaney SM, Winer EP, Goel S. CDK4/6 inhibition in breast cancer: current practice and future directions. Ther Adv Med Oncol. 2018; 10(10):1758835918786451.
  • Schang LM. Advances on Cyclin-dependent Kinases (CDKs) as Novel targets for antiviral drugs. Curr Drug Targets Infect Disord. 2005;5(1):29–37.
  • Lee KH, Lee SJ, Lee HJ, Choi GE, Jung YH, Kim DI, Gabr AA, Ryu JM, Han HJ. Amyloid beta1-42 (Abeta1-42) induces the CDK2-mediated phosphorylation of Tau through the activation of the mTORC1 signaling pathway while promoting neuronal cell death. Front Mol Neurosci. 2017;10:229.
  • Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting Cyclin-dependent Kinases in cancer therapy. Nat Rev Drug Discov. 2015;14(2):130–146.
  • Razga F, Nemethova V. Selective therapeutic intervention: a challenge against off-target effects. Trends Mol Med. 2017;23(8):671–674.
  • Whittaker SR, Mallinger A, Workman P, Clarke PA. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol Ther. 2017; 173:83–105.
  • Shapiro GI. Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol. Clin Cancer Res. 2004;10(12 Pt 2):4270s–4275s.
  • Benson C, White J, De Bono J, O'Donnell A, Raynaud F, Cruickshank C, McGrath H, Walton M, Workman P, Kaye S, et al. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days. Br J Cancer. 2007;96(1):29–37.
  • Jackson RC, Barnett AL, McClue SJ, Green SR. Seliciclib, a cell cycle modulator that acts through the inhibition of cyclin-dependent kinases. Expert Opin Drug Discov. 2008;3(1):131–143.
  • Tadesse S, Caldon EC, Tilley W, Wang S. Cyclin-dependent kinase 2 inhibitors in cancer therapy: an update. J Med Chem. 2019;62(9):4233–4251.
  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Kawakami M, Mustachio LM, Rodriguez-Canales J, et al. Next-generation CDK2/9 inhibitors and anaphase catastrophe in lung cancer. J Natl Cancer Inst. 2017;109(6):109.
  • Kodym E, Kodym R, Reis AE, Habib AA, Story MD, Saha D. The small-molecule CDK inhibitor, SNS-032, enhances cellular radiosensitivity in quiescent and hypoxic non-small cell lung cancer cells. Lung Cancer. 2009;66 (1):37–47.
  • Raghavan P, Tumati V, Yu L, Chan N, Tomimatsu N, Burma S, Bristow RG, Saha D. AZD5438, an inhibitor of Cdk1, 2, and 9, enhances the radiosensitivity of non-small cell lung carcinoma cells. Int J Radiat Oncol Biol Phys. 2012;84(4):e507–e514.
  • Al‐Jassas RM, Islam MS, Al-Majid AM, Nafie MS, Haukka M, Rahman AM, Alayyaf AMA, Barakat A. Synthesis and SARs study of novel spiro‐oxindoles as potent antiproliferative agents with CDK‐2 inhibitory activities. Arch Pharm. 2023;356(8):e2300185.
  • Meng X, Zhu X, Ji J, Zhong H, Li X, Zhao H, Xie G, Wang K, Shu H, Wang X. Erdafitinib inhibits tumorigenesis of human lung adenocarcinoma A549 by inducing S-phase cell-cycle arrest as a CDK2 inhibitor. Molecules. 2022;27(19):6733.
  • Nugiel DA, Vidwan A, Etzkorn AM, Rossi KA, Benfield PA, Burton CR, Cox S, Doleniak D, Seitz SP. Synthesis and evaluation of indenopyrazoles as cyclin-dependent kinase inhibitors. 2. Probing the indeno ring substituent pattern. J Med Chem. 2002;45(24):5224–5232.
  • Shimomura I, Yokoi A, Kohama I, Kumazaki M, Tada Y, Tatsumi K, Ochiya T, Yamamoto Y. Drug library screen reveals benzimidazole derivatives as selective cytotoxic agents for KRAS-mutant lung cancer. Cancer Lett. 2019;451:11–22.
  • El-Hameed RH, Fatahala SS, Sayed AI. Synthesis of some Novel Benzimidazole derivatives as anticancer agent and evaluation for CDK2 inhibition activity. Med Chem. 2022;18(2):238–248.
  • Zhong W, Lalovic B, Zhan J. AG-024322, a novel cyclindependent kinase (CDK) inhibitor. Health. 2009;1(4):249–262.
  • Sculier J, Ghisdal L, Berghmans T, Branle F, Lafitte JJ, Vallot F, Meer AP, Lemaitre F, Steels E, Burniat A, et al. The role of mitomycin in the treatment of non-small cell lung cancer: a systematic review with meta-analysis of the literature. Br J Cancer. 2001;84(9):1150–1155.
  • Barakat A, Alshahrani S, Al-Majid AM, Alamary AS, Haukka M, Abu-Serie MM, Dömling A, Mazyed EA, Badria FA, El-Senduny FF. Novel spirooxindole based benzimidazole scaffold: in vitro, nanoformulation and in vivo studies on anticancer and antimetastatic activity of breast adenocarcinoma. Bioorg Chem. 2022;129:106124.
  • Alshahrani S, Al-Majid AM, Ali M, Alamary AS, Abu-Serie MM, Dömling A, Shafiq M, Ul-Haq Z, Barakat A. Rational design, synthesis, separation, and characterization of new spiroxindoles combined with benzimidazole scaffold as an MDM2 inhibitor. Separations. 2023;10(4):225.
  • CrysAlisPro. Rikagu Oxford Diffraction. Yarnton, Oxfordshire, England: Rikagu Oxford Diffraction Inc.; 2020.
  • Sheldrick GM. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr A Found Adv 2015;71:3–8.
  • Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem. 2015;71(Pt 1):3–8.
  • Hübschle CB, Sheldrick GM, Dittrich B. ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr. 2011;44(Pt 6):1281–1284.
  • Domingo LR. Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules. 2016;21(10):1319.
  • Parr RG, Yang W. Density functional theory of atoms and molecules. New York: Oxford University Press; 1989.
  • Domingo LR, Ríos-Gutiérrez M, Pérez P. Applications of the conceptual density functional indices to organic chemistry reactivity. Molecules. 2016;21(6):748.
  • Domingo LR, Ríos-Gutiérrez M. Application of reactivity indices in the study of polar Diels–alder reactions. In: Liu S, editors, Conceptual density functional theory: towards a new chemical reactivity theory. Weinheim, German: WILEY-VCH GmbH; 2022, Volume 2, p. 481–502.
  • Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc. 1983;105(26):7512–7516.
  • Domingo LR. A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv. 2014;4(61):32415–32428.
  • Doming LR, Ríos-Gutiérrez M. A useful classification of organic reactions based on the flux of the electron density. Sci Rad. 2023;2(1):1–24.
  • Parr RG, Szentpaly LV, Liu S. Electrophilicity index. J Am Chem Soc. 1999;121(9):1922–1924.
  • Domingo LR, Chamorro E, Pérez P. Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem. 2008;73(12):4615–4624.
  • Evans MG, Polanyi M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc. 1935;31:875–894.
  • Fukui K. Formulation of the reaction coordinate. J Phys Chem. 1970;74(23):4161–4163.
  • Domingo LR, Sáez JA, Zaragozá RJ, Arnó M. Understanding the participation of Quadricyclane as nucleophile in polar cycloadditions toward electrophilic molecules. J Org Chem. 2008;73(22):8791–8799.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.
  • Nafie MS, Kishk SM, Mahgoub S, Amer AM. Quinoline‐based thiazolidinone derivatives as potent cytotoxic and apoptosis‐inducing agents through EGFR inhibition. Chem Biol Drug Des. 2022;99(4):547–560.
  • Shawish I, Nafie MS, Barakat A, Aldalbahi A, Al-Rasheed HH, Ali M, Alshaer W, Al Zoubi M, Al Ayoubi S, De la Torre BG, et al. Pyrazolyl-s-triazine with indole motif as a novel of epidermal growth factor receptor/cyclin-dependent kinase 2 dual inhibitors. Front Chem. 2022; 10:1078163.
  • Dawood KM, Raslan MA, Abbas AA, Mohamed BE, Abdellattif MH, Nafie MS, Hassan MK. Novel Bis-Thiazole derivatives: synthesis and potential cytotoxic activity through apoptosis with molecular docking approaches. Front Chem. 2021;9:694870.
  • Chai J-D, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys. 2008;10(44):6615–6620.
  • Hehre MJ, Radom L, Schleyer PR, Pople J. Ab initio molecular orbital theory. New York: Wiley; 1986.
  • Tomasi J, Persico M. Molecular interactions in solution: and overview of methods based on continuous distributions of the solvent. Chem Rev. 1994;94(7):2027–2094.
  • Simkin. BYa, Sheikhet II. Quantum chemical and statistical theory of solutions– computational approach. London: Ellis Horwood; 1995.
  • Cossi M, Barone V, Cammi R, Tomasi J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett. 1996;255(4–6):327–335.
  • Cances E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997;107(8):3032–3041.
  • Barone V, Cossi M, Tomasi J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J Comput Chem. 1998;19(4):404–417.
  • Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys. 1985;83(2):735–746.
  • Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev. 1988;88(6):899–926.
  • Frisch MJ. Gaussian 16, Revision A.03. Wallingford CT: Gaussian, Inc.; 2016.
  • De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH. Inhibition of cyclin‐dependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem. 1997;243(1–2):518–526.
  • “Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2019.” 2019.
  • Case DA, Aktulga HM, Belfon K, Ben-Shalom IY, Berryman JT, et al. Amber 2023. San Francisco: University of California. 2023.
  • Khalil R, Ashraf S, Khalid A, Ul-Haq Z. Exploring Novel N-Myristoyltransferase inhibitors: a molecular dynamics simulation approach. ACS Omega. 2019;4(9):13658–13670.
  • Roe DR, Cheatham TE. III PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9(7):3084–3095.