1,302
Views
1
CrossRef citations to date
0
Altmetric
Review Article

The multifaceted nature of plant acid phosphatases: purification, biochemical features, and applications

, , , ORCID Icon &
Article: 2282379 | Received 26 Aug 2023, Accepted 07 Nov 2023, Published online: 20 Nov 2023

References

  • Dewan SS. Global markets for enzymes in industrial applications. Wellesley: BCC Research LLC; 2014.
  • KBV Research. Enzymes market size, industry trends analysis report. 2023 [cited 2023 June 24]. https://www.kbvresearch.com/enzymes-market/
  • Uhlig H. Industrial enzymes and their applications. New York: Wiley; 1998.
  • Davies DR. The phosphatase activity of spleen extracts. Biochem J. 1934; 28(2):529–536.
  • Neumann H. Substrate selectivity in the action of alkaline and acid phosphatases. J Biol Chem. 1968; 243(18):4671–4676.
  • Fernley HN, Boyer PD. The enzymes. vol. 4. New York: Academic Press; 1971.
  • Sambuk EV, Fizikova AY, Savinov VA, Padkina MV. Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Enzyme Res. 2011; 2011:356093–16.
  • Pawar VC, Thaker VS. Acid phosphatase and invertase activities of Aspergillus niger. Mycoscience. 2009; 50(5):323–330.
  • Shekar S, Tumaney A, Rao TJVS, Rajasekharan R. Isolation of lysophosphatidic acid phosphatase from developing peanut cotyledons. Plant Physiol. 2002; 128(3):988–996.
  • Tabaldi LA, Ruppenthal R, Cargnelutti D, Morsc VM, Pereira LB, Schetinger MRC. Effects of metal elements on acid phosphatase activity in cucumber (Cucumis sativus l.) seedlings. Environ Exp Bot. 2007; 59(1):43–48.
  • Nicanuzia dos Prazeres J, Veríssima Ferreira C, Aoyama H. Acid phosphatase activities during the germination of glycine max seeds. Plant Physiol Biochem. 2004; 42(1):15–20.
  • Nadir S, Saeed A, Naz R, Siddiqua A, Sherazi M, Wazir SM, Saeed A. Isolation, purification and characterization of acid phosphatase from germinating Vigna radiata seeds. J Chem Soc Pakistan. 2012; 34(3):717–727.
  • Bull H, Murray PG, Thomas D, Fraser AM, Nelson PN. Acid phosphatases. Mol Pathol. 2002;55(2):65–72.
  • Feder D, McGeary RP, Mitić N, Lonhienne T, Furtado A, Schulz BL, Henry RJ, Schmidt S, Guddat LW, Schenk G. Structural elements that modulate the substrate specificity of plant purple acid phosphatases: avenues for improved phosphorus acquisition in crops. Plant Sci. 2020;294:110445.
  • Feder D, Gahan LR, McGeary RP, Guddat LW, Schenk G. The binding mode of an ADP analogue to a metallohydrolase mimics the likely transition state. ChemBioChem. 2019;20(12):1536–1540.
  • Plaxton WC, Carswell MC. Metabolic aspects of the phosphate starvation response in plants. In: Lerner HR, editor. Plant responses to environmental stresses. London: Routledge; 2018; p. 349–372.
  • Anand A, Srivastava PK. A Molecular description of acid phosphatase. Appl Biochem Biotechnol. 2012;167(8):2174–2197.
  • Hur YJ, Jin BR, Nam J, Chung YS, Lee JH, Choi HK, Yun DJ, Yi G, Kim YH, Kim DH. Molecular characterization of OsPAP2: Transgenic expression of a purple acid phosphatase up-regulated in phosphate-deprived rice suspension cells. Biotechnol Lett. 2010; 32(1):163–170.
  • Auriol M, Filali-Meknassi Y, Adams CD, Tyagi RD, Noguerol TN, Piña B. Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: efficiency of horseradish peroxidase and laccase from trametes versicolor. Chemosphere. 2008; 70(3):445–452.
  • Cashikar AG, Kumaresan R, Rao NM. Biochemical characterization and subcellular localization of the red kidney bean purple acid phosphatase. Plant Physiol. 1997;114(3):907–915.
  • Spasova D, Aleksieva P, Nacheva L, Radoevska S. Ultracytochemical localization of acid phosphatase in humicola lutea conidia and mycelia. Z Naturforsch C J Biosci. 2007;62(1–2):65–69.
  • Duff SMG, Sarath G, Plaxton WC. The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant. 1994; 90(4):791–800.
  • Kaida R, Serada S, Norioka N, Norioka S, Neumetzler L, Pauly M, Sampedro J, Zarra I, Hayashi T, Kaneko TS. Potential role for purple acid phosphatase in the dephosphorylation of wall proteins in tobacco cells. Plant Physiol. 2010;153(2):603–610.
  • Veljanovski V, Vanderbeld B, Knowles VL, Snedden WA, Plaxton WC. Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived arabidopsis suspension cells and seedlings. Plant Physiol. 2006;142(3):1282–1293.
  • Pan SM. Phosphatases in spinach leaves. Subcellular localization and the stress effect. Bot Bull Acad Sin. 1985;26:185–194.
  • Tran HT, Hurley BA, Plaxton WC. Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition. Plant Sci. 2010;179(1-2):14–27.
  • Pasqualini S, Panara F, Ederli L, Batini P, Antonielli M. Multiple acid phosphatase in barley coleoptiles. Isolation and partial characterization of the 63 kDa soluble enzyme form. Plant Physiol Biochem. 1997;35(2):95–101.
  • Lim JH, Chung IM, Ryu SS, Park MR, Yun SJ. Differential responses of rice acid phosphatase activities and isoforms to phosphorus deprivation. BMB Rep. 2003;36(6):597–602.
  • Gellatly KS, Moorhead GBG, Duff SMG, Lefebvre DD, Plaxton WC. Purification and characterization of a potato tuber acid phosphatase having significant phosphotyrosine phosphatase activity. Plant Physiol. 1994;106(1):223–232.
  • Goldstein AH, Baertlein DA, McDaniel RG. Phosphate starvation inducible metabolism in Lycopersicon esculentum: I. Excretion of acid phosphatase by tomato plants and suspension-cultured cells. Plant Physiol. 1988;87(3):711–715.
  • Garcia M, Ascencio J. Root morphology and acid phosphatase activity in tomato plants during development of and recovery from phosphorus stress. J Plant Nutr. 1992;15(11):2491–2503.
  • Jain A, Sharma AD, Singh K, Coll LK. Plant growth hormones and salt stress-mediated changes in acid and alkalinephosphatase activities in the pearl millet seeds. Int J Agric Biol. 2004;6:57–63.
  • Sharma AD, Thakur M, Rana M, Singh K. Effect of plant growth hormones and abiotic stresses on germination, growth and phosphatase activities in Sorghum bicolor (L.) Moench Seeds. African J Biotechnol. 2004;3(6):308–312.
  • Nasri N, Saïdi I, Kaddour R, Lachaâl M. Effect of salinity on germination, seedling growth and acid phosphatase activity in lettuce. AJPS. 2015;06(01):57–63.
  • Dubey RS, Sharma KN. Behaviour of phosphatases in germinating rice in relation to salt tolerance. Plant Physiol Biochem. 1990;28(1):17–26.
  • Agoreyo BO. Acid phosphates and alkaline phosphates activities in ripening fruit of Musa paradisiaca’L. Plant Omics. 2010;3(3):66–69.
  • Dodd JC, Burton CC, Burns RG, Jeffries P. Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular‐arbuscular mycorrhizal fungi. New Phytol. 1987;107(1):163–172.
  • Beck JL, McConachie LA, Summors AC, Arnold WN, De Jersey J, Zerner B. Properties of a purple phosphatase from red kidney bean: a zinc-iron metalloenzyme. Biochim Biophys Acta. 1986;869(1):61–68.
  • Shane MW, Stigter K, Fedosejevs ET, Plaxton WC. Senescence-inducible cell wall and intracellular purple acid phosphatases: Implications for phosphorus remobilization in Hakea Prostrata (Proteaceae) and Arabidopsis Thaliana (Brassicaceae). J Exp Bot. 2014; 65(20):6097–6106.
  • Cavagis ADM, Granjeiro PA, Ferreira CV, Aoyama H. Effect of chaotropic agents on reversible unfolding of a soybean (glycine max) seed acid phosphatase. Phytochemistry. 2004; 65(7):831–836.
  • Leitão VO, de Melo Lima RC, Vainstein MH, Ulhoa CJ. Purification and characterization of an acid phosphatase from Trichoderma harzianum. Biotechnol Lett. 2010; 32(8):1083–1088.
  • Gee KR, Sun WC, Bhalgat MK, Upson RH, Klaubert DH, Latham KA, Haugland RP. Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and β-Galactosidases. Anal Biochem. 1999; 273(1):41–48.
  • Tagad CK, Sabharwal SG. Purification and characterization of acid phosphatase from Macrotyloma uiflorum seeds. J Food Sci Technol. 2018; 55(1):313–320.
  • Krishnakumar S, Mhasawade S, Sharma L, Kahandal A, Tagad C. A cross-linked biopolymer entrapped diazo complex as a colorimetric sensor for the detection of alkaline phosphatase. MRS Adv. 2022; 7(30):729–735.
  • Chan KM, Delfert D, Junger KD. A direct colorimetric assay for Ca2+-stimulated ATPase Activity. Anal Biochem. 1986; 157(2):375–380.
  • Ames BN. Assay of inorganic phosphate, total phosphate and phosphatases. In: Colowick SP, Kaplan NO, editors. Methods in enzymology. vol. 8. New York: Academic Press; 1966. p. 115–118.
  • Lowry OH, Lopez JA. The determination of inorganic phosphate in the presence of labile phosphate esters. J Biol Chem. 1946;162(3):421–428.
  • Satendra S, Luthra PM. Identification, characterization and partial purification of acid phosphatase from cotyledons of Psoralea corylifolia L. Am J Plant Physiol. 2011;6(4):228–241.
  • Koffi DM, Gonnety JT, Faulet BM, Bédikou ME, Kouamé LP, Bi IAZ, Niamké SL. Biochemical characterization of two non-specific acid phosphatases from Cucurbitaceae (Lagenaria Siceraria) edible seeds exhibiting phytasic activity. J Anim Plant Sci. 2010;7:860–875.
  • Asaduzzaman AKM, Rahman HM, Yeasmin T. Purification and characterization of acid phosphatase from a germinating black gram (Vigna Mungo L.) Seedling. Arch Biol Sci. 2011;63(3):747–756.
  • Kaur P, Sharma AD, Rakhra G. Purification and characterization of a heat-stable acid phosphatase from Chickpea. Res Plant Biol. 2011;1(4):1–6.
  • Gonnety JT, Niamké S, Faulet BM, Jean-Parfait E, Kouamé LP. Purification and characterization of three lowmolecular-weight acid phosphatases from Peanut (Arachis Hypogaea) seedlings. African J Biotechnol. 2006;5(1):35–44.
  • Pintus F, Spano D, Corongiu S, Floris G, Medda R. Purification, primary structure, and properties of Euphorbia characias latex purple acid phosphatase. Biochem. 2011;76(6):694–701.
  • Konozy EHE. Purification and characterization of acid phosphatase (AcPase) from cotyledon of Erythrina indica. Glob Adv Res J Agric Sci. 2016;5(6):195–203.
  • Nongpiur SR, Kalita T, Belho K, Ambasht PK. purification and partial characterization of acid phosphatase from rice bean (Vigna umbellata thunb.). J Proteins Proteom. 2021;12(4):325–335.
  • Panara F, Pasqualini S, Antonielli M. Multiple forms of barley root acid phosphatase: purification and some characteristics of the major cytoplasmic isoenzyme. Biochim Biophys Acta. 1990;1037(1):73–80.
  • Guo J, Pesacreta TC. Purification and characterization of an acid phosphatase from the bulb of Allium Cepa L. Var. Sweet Spanish. J Plant Physiol. 1997;151(5):520–527.
  • Penheiter AR, Duff SMG, Sarath G. Soybean root nodule acid phosphatase. Plant Physiol. 1997;114(2):597–604.
  • Bozzo GG, Raghothama KG, Plaxton WC. Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. Biochem J. 2004;377(Pt 2):419–428.
  • Bhargava R, Sachar RC. Induction of acid phosphatase in cotton seedlings: enzyme purification, subunit structure and kinetic properties. Phytochemistry. 1987;26(5):1293–1297.
  • Barrett-Lennard EG, Greenway H. Partial separation and characterization of soluble phosphatases from leaves of wheat grown under phosphorus deficiency and water deficit. J Exp Bot. 1982;33(4):694–704.
  • Uehara K, Fujimoto S, Taniguchi T. Isolation of violet-colored acid phosphatase from sweet potato. J Biochem. 1971;70(1):183–185.
  • Uehara K, Fujimoto S, Taniguchi T. Studies on violet-colored acid phosphatase of sweet potato: I. Purification and some physical properties. J Biochem. 1974;75(3):627–638.
  • Ferreir CV, Granjeiro JM, Taga EM, Aoyama H. purification and characterization of multiple forms of soybean seed acid phosphatases. Plant Physiol Biochem. 1998;36(7):487–494.
  • Klabunde T, Sträter N, Krebs B, Witzel H. Structural relationship between the mammalian Fe(III)-Fe(II) and the Fe(III)-Zn(II) plant purple acid phosphatases. FEBS Lett. 1995;367(1):56–60.
  • Schenk G, Ge Y, Carrington LE, Wynne CJ, Searle IR, Carroll BJ, Hamilton S, de Jersey J. Binuclear metal centers in plant purple acid phosphatases: Fe–Mn in sweet potato and Fe–Zn in soybean. Arch Biochem Biophys. 1999;370(2):183–189.
  • Olczak M, Morawiecka B, Watorek W. Plant purple acid phosphatases-genes, structures and biological function. Acta Biochim Pol. 2003;50(4):1245–1256.
  • Beck JL, McArthur MJ, De Jersey J, Zerner B. Derivatives of the purple phosphatase from red kidney bean: Replacement of zinc with other divalent metal ions. Inorganica Chim Acta. 1988;153(1):39–44.
  • Fujimoto S, Ohara A, Uehara K. Carbohydrate and metal analyses of violet-colored acid phosphatase of sweet potato. Agric Biol Chem. 1980;44(7):1659–1660.
  • Fujimoto S, Nakagawa T, Ohara A. Isolation of violet-colored acid phosphatase from soybean. Agric Biol Chem. 1977;41(3):599–600.
  • Kawabe H, Sugiura Y, Terauchi M, Tanaka H. Mn(III)-containing acid phosphatase: properties of Fe(III)-substituted enzyme and function of Mn(III) and Fe(III) in plant and mammalian acid phosphatases. Biochim Biophys Acta. 1984;784(1):81–89.
  • Li D, Zhu H, Liu K, Liu X, Leggewie G, Udvardi M, Wang D. Purple acid phosphatases of arabidopsis thaliana: comparative analysis and differential regulation by phosphate deprivation. J Biol Chem. 2002;277(31):27772–27781.
  • Sugiura Y, Kawabe H, Tanaka H. New manganese (III)-containing acid phosphatase. evidence for an intense charge-transfer band and tyrosine phenolate coordination. J Am Chem Soc. 1980;102(21):6581–6582.
  • Selleck C, Clayton D, Gahan LR, Mitić N, McGeary RP, Pedroso MM, Guddat LW, Schenk G. Visualization of the reaction trajectory and transition state in a hydrolytic reaction catalyzed by a metalloenzyme. Chemistry. 2017;23(20):4778–4781.
  • Yenigün B, Güvenilir Y. Partial purification and kinetic characterization of acid phosphatase from garlic seedling. Appl Biochem Biotechnol. 2003;105–108(1-3):677–687.
  • Jing G, Li L, Li Y, Xie L, Zhang R. Purification and partial characterization of two acid phosphatase forms from pearl oyster (Pinctada fucata). Comp Biochem Physiol Part B Biochem Mol Biol. 2006; 143(2):229–235.
  • Zaman U, Khan SU, Hendi AA, Rehman KU, Badshah S, Refat MS, Alsuhaibani AM, Ullah K, Wahab A. Kinetic and thermodynamic studies of novel acid phosphatase isolated and purified from Carthamus oxyacantha seedlings. Int J Biol Macromol. 2023;224:20–31.
  • Chafik A, Essamadi A, Çelik SY, Mavi A. A novel acid phosphatase from cactus (Opuntia Megacantha Salm-Dyck) cladodes: purification and biochemical characterization of the enzyme. Int J Biol Macromol. 2020;160:991–999.
  • Zaman U, Naz R, Khattak N, Rehman UK, Iqbal A, Ahmad S, Shah LA. Investigating the thermodynamic and kinetics properties of acid phosphatase extracted and purified from seedlings of Chenopodium murale. Int J Biol Macromol. 2020;165(Pt A):1475–1481.
  • Turner WL, Plaxton WC. purification and characterization of banana fruit acid phosphatase. Planta. 2001;214(2):243–249.
  • Yoneyama T, Taira M, Suzuki T, Nakamura M, Niwa K, Watanabe T, Ohyama T. Expression and characterization of a recombinant unique acid phosphatase from kidney bean hypocotyl exhibiting chloroperoxidase activity in the yeast Pichia pastoris. Protein Expr Purif. 2007;53(1):31–39.
  • Babich L, Hartog AF, van der Horst MA, Wever R. Continuous‐flow reactor‐based enzymatic synthesis of phosphorylated compounds on a large scale. Chemistry. 2012;18(21):6604–6609.
  • Li CP, Enomoto H, Hayashi Y, Zhao H, Aoki T. Recent advances in phosphorylation of food proteins: a review. LWT-Food Sci Technol. 2010; 43(9):1295–1300.
  • Tanaka N, Hasan Z, Hartog AF, van Herk T, Wever R, Sanders R-J. phosphorylation and dephosphorylation of polyhydroxy compounds by class a bacterial acid phosphatases. Org Biomol Chem. 2003; 1(16):2833–2839.
  • Sanllorente-Méndez S, Domínguez-Renedo O, Arcos-Martínez MJ. Development of acid phosphatase based amperometric biosensors for the inhibitive determination of As(V). Talanta. 2012;93:301–306.
  • Danzer T, Schwedt G. Chemometric methods for the development of a biosensor system and the evaluation of inhibition studies with solutions and mixtures of pesticides and heavy metals Part 1. Development of an enzyme electrodes system for pesticide and heavy metal screening using selected chemometric method. Anal Chim Acta. 1996;318(3):275–286.
  • Mazzei F, Botrè F, Botrè C. Acid phosphatase/glucose oxidase-based biosensors for the determination of pesticides. Anal Chim Acta. 1996;336(1-3):67–75.
  • Tagad CK, Kulkarni A, Aiyer RC, Patil D, Sabharwal SG. A miniaturized optical biosensor for the detection of Hg2+ based on acid phosphatase inhibition. Optik. 2016; 127(20):8807–8811.
  • Feder D, Mohd-Pahmi SH, Hussein WM, Guddat LW, McGeary RP, Schenk G. Rational design of potent inhibitors of a metallohydrolase using a fragment-based approach. ChemMedChem. 2021;16(21):3342–3359.
  • Feder D, Mohd-Pahmi SH, Adibi H, Guddat LW, Schenk G, McGeary RP, Hussein WM. Optimization of an α-Aminonaphthylmethylphosphonic acid inhibitor of purple acid phosphatase using rational structure-based design approaches. Eur J Med Chem. 2023;254:115383.