1,696
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of iminosugar-based glycosidase inhibitors as drug candidates for SARS-CoV-2 virus via molecular modelling and in vitro studies

, , , , , , , , , , , , , , & show all
Article: 2289007 | Received 12 Jul 2023, Accepted 24 Nov 2023, Published online: 12 Dec 2023

References

  • De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016;29(3):695–747.
  • Chaudhuri S, Symons JA, Deval J. Innovation and trends in the development and approval of antiviral medicines: 1987–2017 and beyond. Antiviral Res. 2018;155:76–88.
  • Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, et al. Drug repurposing: progress, challenges and recommendations: a review article on drug repurposing. Nat Rev Drug Discov. 2019;18(1):41–58.
  • a) Dotolo S, Marabotti A, Facchiano A, Tagliaferri R. A review on drug repurposing applicable to COVID-19. Brief Bioinform. 2021;22(2):726–741. b) Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacol Rep. 2020;72(6):1479–1508. c) Parvathaneni V, Gupta V. Utilizing drug repurposing against COVID-19 – efficacy, limitations, and challenges. Life Sci. 2020;259:118275. d) De Savi C, Hughes DL, Kvaerno L. Quest for a COVID-19 cure by repurposing small-molecule drugs: mechanism of action, clinical development, synthesis at scale, and outlook for supply. Org Process Res Dev. 2020;24(6):940–976.
  • a) Riva L, Yuan S, Yin X, Martin-Sancho L, Matsunaga N, Pache L, Burgstaller-Muehlbacher S, De Jesus PD, Teriete P, Hull MV, et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature. 2020;586(7827):113–119. b) Arshad U, Pertinez H, Box H, et al. Prioritization of anti‐SARS‐Cov‐2 drug repurposing opportunities based on plasma and target site concentrations derived from their established human pharmacokinetics. Clin Pharmacol Ther. 2020;108(4):775–790.
  • WHO Solidarity Trial Consortium. Remdesivir and three other drugs for hospitalised patients with COVID-19: final results of the WHO Solidarity randomised trial and updated meta-analyses. Lancet. 2022;399(10339):1941–1953.
  • a) Al-Muhsen S, Al-Numair NS, Saheb Sharif-Askari N, Basamh R, Alyounes B, Jabaan A, Saheb Sharif-Askari F, Alosaimi MF, Alsohime F, Halwani R, et al. Favipiravir effectiveness and safety in hospitalized moderate-severe COVID-19 patients: observational prospective multicenter investigation in Saudi Arabia. Front Med (Lausanne). 2022;9:826247. b) McMahon JH, Lau JSY, Coldham A, Roney J, Hagenauer M, Price S, Bryant M, Garlick J, Paterson A, Lee SJ, et al. Favipiravir in early symptomatic COVID-19, a randomised placebo-controlled trial. EClinicalMedicine. 2022;54:101703.
  • Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E, RECOVERY Collaborative Group, et al. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med. 2021;384(8):693–704.
  • Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M, Berritt S, Boras B, Cardin RD, Carlo A, Coffman KJ, et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;374(6575):1586–1593.
  • Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, Höbartner C, Cramer P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol. 2021;28(9):740–746.
  • Moghadasi SA, Heilmann E, Khalil AM, Nnabuife C, Kearns FL, Ye C, Moraes SN, Costacurta F, Esler MA, Aihara H, et al. Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors. Sci Adv. 2023;9(13):eade8778.
  • a) Dwek RA, Butters TD, Platt FM, Zitzmann N. Targeting glycosylation as a therapeutic approach. Nat Rev Drug Discov. 2002;1(1):65–75. b) Alonzi DS, Scott KA, Dwek RA, Zitzmann N. Iminosugar antivirals: the therapeutic sweet spot. Biochem Soc Trans. 2017;45(2):571–582. c) Norton PA, Gu B, Block TM. Iminosugars as antiviral agents. In: Compain P, Martin OR, editors. Iminosugars: from synthesis to therapeutic applications. Chichester, UK: John Wiley & Sons, Ltd; 2007. p. 209–224.
  • Tharappel AM, Samrat SK, Li Z, Li H. Targeting crucial host factors of SARS-CoV-2. ACS Infect Dis. 2020;6(11):2844–2865.
  • Chang J, Warren TK, Zhao X, Gill T, Guo F, Wang L, Comunale MA, Du Y, Alonzi DS, Yu W, et al. Small molecule inhibitors of ER α-glucosidases are active against multiple hemorrhagic fever viruses. Antiviral Res. 2013;98(3):432–440.
  • Warfield KL, Alonzi DS, Hill JC, Caputo AT, Roversi P, Kiappes JL, Sheets N, Duchars M, Dwek RA, Biggins J, et al. Targeting endoplasmic reticulum α-glucosidase I with a single-dose iminosugar treatment protects against lethal influenza and dengue virus infections. J Med Chem. 2020;63(8):4205–4214.
  • Zhao X, Guo F, Comunale MA, Mehta A, Sehgal M, Jain P, Cuconati A, Lin H, Block TM, Chang J, et al. Inhibition of endoplasmic reticulum-resident glucosidases impairs severe acute respiratory syndrome coronavirus and human coronavirus NL63 spike protein-mediated entry by altering the glycan processing of angiotensin I-converting enzyme 2. Antimicrob Agents Chemother. 2015;59(1):206–216.
  • Williams SJ, Goddard-Borger ED. ED. α-glucosidase inhibitors as host-directed antiviral agents with potential for the treatment of COVID-19. Biochem Soc Trans. 2020;48(3):1287–1295.
  • Dwek RA, Bell JI, Feldmann M, Zitzmann N. Host-targeting oral antiviral drugs to prevent pandemics. Lancet. 2022;399(10333):1381–1382.
  • Chang J, Block TM, Guo J-T. Antiviral therapies targeting host ER alpha-glucosidases: current status and future directions. Antiviral Res. 2013;99(3):251–260.
  • a) Lyseng-Williamson KA. Miglustat: a review of its use in Niemann-Pick disease type C. Drugs. 2014;74(1):61–74. b) Patterson MC, Vecchio D, Prady H. Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol. 2007;6(9):765–772.
  • Ficicioglu C. Review of miglustat for clinical management in Gaucher disease type 1. Ther Clin Risk Manag. 2008;4(2):425–431.
  • Lahav D, Liu B, van den Berg RJBHN, van den Nieuwendijk AMCH, Wennekes T, Ghisaidoobe AT, Breen I, Ferraz MJ, Kuo C-L, Wu L, et al. A fluorescence polarization activity-based protein profiling assay in the discovery of potent, selective inhibitors for human nonlysosomal glucosylceramidase. J Am Chem Soc. 2017;139(40):14192–14197.
  • Sayce AC, Alonzi DS, Killingbeck SS, Tyrrell BE, Hill ML, Caputo AT, Iwaki R, Kinami K, Ide D, Kiappes JL, et al. Iminosugars inhibit dengue virus production via inhibition of ER alpha-glucosidases—not glycolipid processing enzymes. PLoS Negl Trop Dis. 2016;10(3):e0004524.
  • Flanagan JJ, Rossi B, Tang K, Wu X, Mascioli K, Donaudy F, Tuzzi MR, Fontana F, Cubellis MV, Porto C, et al. The pharmacological chaperone 1-deoxynojirimycin increases the activity and lysosomal trafficking of multiple mutant forms of acid alpha-glucosidase. Hum Mutat. 2009;30(12):1683–1692.
  • a) Elbein AD. Glycosidase inhibitors: inhibitors of N‐linked oligosaccharide processing. Faseb J. 1991;5(15):3055–3063. b) Tulsiani DR, Harris TM, Touster O. Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of golgi mannosidase II. J Biol Chem. 1982;257(14):7936–7939.
  • a) Goss PE, Baptiste J, Fernandes B, Baker M, Dennis JW. A phase I study of swainsonine in patients with advanced malignancies. Cancer Res. 1994;54(6;54(6):1450–1457. b) Goss PE, Reid CL, Bailey D, et al. Phase IB clinical trial of the oligosaccharide processing inhibitor swainsonine in patients with advanced malignancies. Clin Cancer Res. 1997;3(7):1077–1086. c) Shaheen PE, Stadler W, Elson P, Knox J, Winquist E, Bukowski RM. Phase II study of the efficacy and safety of oral GD0039 in patients with locally advanced or metastatic renal cell carcinoma. Invest New Drugs. 2005;23(6):577–581.
  • Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–468.
  • a) Pavlović D, Neville DCA, Argaud O, Blumberg B, Dwek RA, Fischer WB, Zitzmann N. The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci USA. 2003;100(10):6104–6108. b) Durantel D, Branza-Nichita N, Carrouée-Durantel S, Butters TD, Dwek RA, Zitzmann N. Study of the mechanism of antiviral action of iminosugar derivatives against bovine viral diarrhea virus. J Virol. 2001;75(19):8987–8998.
  • a) McCafferty EH, Scott LJ. Migalastat: a review in Fabry disease. Drugs. 2019;79(5):543–554. b) McCafferty EH, Scott LJ. Correction to: Migalastat: a review in Fabry disease. Drugs. 2019;79(5):543–554.
  • Mahoney R, Lee GK, Zepeda JP, et al. Severe manifestations and treatment of COVID-19 in a transplanted patient with Fabry disease. Mol Genet Metab Rep. 2021;29:100802.
  • Han N, Hwang W, Tzelepis K, Schmerer P, Yankova E, MacMahon M, Lei W, M Katritsis N, Liu A, Felgenhauer U, et al. Identification of SARS-CoV-2–induced pathways reveals drug repurposing strategies. Sci Adv. 2021;7(27):eabh3032.
  • Caputo AT, Alonzi DS, Marti L, Reca I-B, Kiappes JL, Struwe WB, Cross A, Basu S, Lowe ED, Darlot B, et al. Structures of mammalian ER α-glucosidase II capture the binding modes of broad-spectrum iminosugar antivirals. Proc Natl Acad Sci USA. 2016;113(32):E4630–8.
  • a) O'Keefe S, Roebuck QP, Nakagome I, Hirono S, Kato A, Nash R, High S. Characterizing the selectivity of ER α-glucosidase inhibitors. Glycobiology. 2019;29(7):530–542. b) Satoh T, Toshimori T, Yan G, et al. Structural basis for two-step glucose trimming by glucosidase II involved in ER glycoprotein quality control. Sci Rep. 2016;6(1):20575.
  • Satoh T, Toshimori T, Yan G, et al. 5DL0 Crystal structure of glucosidase II alpha subunit (Glc1Man2-bound from). Internet]. RCSB PDB. 2016; Available from: rcsb.org/structure/5DL0.
  • RCSB Protein Data Bank [Internet]. Available from: rcsb.org. (last accessed 22 December 2022).
  • Du Y, Ye H, Gill T, Wang L, Guo F, Cuconati A, Guo J-T, Block TM, Chang J, Xu X, et al. N-Alkyldeoxynojirimycin derivatives with novel terminal tertiary amide substitution for treatment of bovine viral diarrhea virus (BVDV), Dengue, and Tacaribe virus infections. Bioorg Med Chem Lett. 2013;23(7):2172–2176.
  • Prell E, Korb C, Kluge R, Ströhl D, Csuk R. Amplification of the inhibitory activity and reversal of the selectivity of miglitol by C(2′)-monofluorination. Arch Pharm (Weinheim)). 2010;343(10):583–589.
  • De Crescenzo GA, Getman DP. 1,4-Dideoxy-4-fluoronojirimycin. Eur. Pat. Appl. EP481950 A2; 1992.
  • Hentges A, Bause E. Affinity purification and characterization of glucosidase II from pig liver. Biol Chem. 1997;378(9):1031–1038.
  • Andersen SM, Ebner M, Ekhart CW, Gradnig G, Legler G, Lundt I, Stütz AE, Withers SG, Wrodnigg T. Two isosteric fluorinated derivatives of the powerful glucosidase inhibitors, 1-deoxynojirimycin and 2,5-dideoxy-2,5-imino-d-mannitol: syntheses and glucosidase-inhibitory activities of 1,2,5-trideoxy-2-fluoro-1,5-imino-d-glucitol and of 1,2,5-trideoxy-1-fluoro-2,5-imino-d-mannitol. Carbohydr Res. 1997;301(3-4):155–166.
  • Berger A, Dax K, Gradnig G, Grassberger V, Stütz AE, Ungerank M, Legler G, Bause E. Synthesis and biological activity of C-6 modified derivatives of the glucosidase inhibitor 1-deoxynojirimycin. Bioorg Med Chem Lett. 1992;2(1):27–32.
  • Tarko L, Hirtopeanu A. QSAR study regarding the inhibitory activity of some iminosugars against α-glucosidase. Rev Chim. 2016;67(1):13–16.
  • Ma J, Wu S, Zhang X, Guo F, Yang K, Guo J, Su Q, Lu H, Lam P, Li Y, et al. Ester Prodrugs of IHVR-19029 with enhanced oral exposure and prevention of gastrointestinal glucosidase interaction. ACS Med Chem Lett. 2017;8(2):157–162.
  • Kiappes JL, Hill ML, Alonzi DS, Miller JL, Iwaki R, Sayce AC, Caputo AT, Kato A, Zitzmann N. ToP-DNJ, a selective inhibitor of endoplasmic reticulum α-glucosidase II exhibiting antiflaviviral activity. ACS Chem Biol. 2018;13(1):60–65.
  • Cendret V, Legigan T, Mingot A, Thibaudeau S, Adachi I, Forcella M, Parenti P, Bertrand J, Becq F, Norez C, et al. Synthetic deoxynojirimycin derivatives bearing a thiolated, fluorinated or unsaturated N-alkyl chain: identification of potent α-glucosidase and trehalase inhibitors as well as F508del-CFTR correctors. Org Biomol Chem. 2015;13(43):10734–10744.
  • Zamoner LOB, Aragão-Leoneti V, Carvalho I. Iminosugars: Effects of stereochemistry, ring size, and N-substituents on glucosidase activities. Pharmaceuticals (Basel). 2019;12(3):108.
  • a) Mykhailiuk PK. Saturated bioisosteres of benzene: where to go next? Org Biomol Chem. 2019;17(11):2839–2849. b) Measom ND, Down KD, Hirst DJ, Jamieson C, Manas ES, Patel VK, Somers DO. Investigation of a bicyclo[1.1.1]pentane as a phenyl replacement within an LpPLA 2 inhibitor. ACS Med Chem Lett. 2017;8(1):43–48. c) Stepan AF, Subramanyam C, Efremov IV, Dutra JK, O'Sullivan TJ, DiRico KJ, McDonald WS, Won A, Dorff PH, Nolan CE, et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor. J Med Chem. 2012;55(7):3414–3424.
  • Rowland RJ, Wu L, Davies GJ. 6IBK Crystal structure of human alpha-galactosidase A in complex with alpha-galactose configured cyclosulfamidate ME763. Rcsb Pdb. 2019.
  • a) Hill CH, Viuff AH, Spratley SJ, Salamone S, Christensen SH, Read RJ, Moriarty NW, Jensen HH, Deane JE. Azasugar inhibitors as pharmacological chaperones for Krabbe disease. Chem Sci. 2015;6(5):3075–3086. b) Won J-S, Singh AK, Singh I. Biochemical, cell biological, pathological, and therapeutic aspects of Krabbe’s disease. J Neurosci Res. 2016;94(11):990–1006.
  • Ayers BJ, Ngo N, Jenkinson SF, Martínez RF, Shimada Y, Adachi I, Weymouth-Wilson AC, Kato A, Fleet GWJ. Glycosidase inhibition by all 10 stereoisomeric 2,5-dideoxy-2,5-iminohexitols prepared from the enantiomers of glucuronolactone. J Org Chem. 2012;77(18):7777–7792.
  • Kato A, Yamashita Y, Nakagawa S, Koike Y, Adachi I, Hollinshead J, Nash RJ, Ikeda K, Asano N. 2,5-Dideoxy-2,5-imino-d-altritol as a new class of pharmacological chaperone for Fabry disease. Bioorg Med Chem. 2010;18(11):3790–3794.
  • Sobala ŁF, Fernandes PZ, Hakki Z, Thompson AJ, Howe JD, Hill M, Zitzmann N, Davies S, Stamataki Z, Butters TD, et al. Structure of human endo-α-1,2-mannosidase (MANEA), an antiviral host-glycosylation target. Proc Natl Acad Sci USA. 2020;117(47):29595–29601.
  • Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.
  • Hamilton SR, Li H, Wischnewski H, Prasad A, Kerley-Hamilton JS, Mitchell T, Walling AJ, Davidson RC, Wildt S, Gerngross TU, et al. Intact α-1,2-endomannosidase is a typical type II membrane protein. Glycobiology. 2005;15(6):615–624.
  • Koyama R, Kano Y, Kikushima K, Mizutani A, Soeda Y, Miura K, Hirano T, Nishio T, Hakamata W. A novel Golgi mannosidase inhibitor: molecular design, synthesis, enzyme inhibition, and inhibition of spheroid formation. Bioorg Med Chem. 2020;28(11):115492.
  • a) Clemons M, Danson S, Howell A. Tamoxifen (‘Nolvadex’): a review. Cancer Treat Rev. 2002;28(4):165–180. b) Heel RC, Brogden RN, Speight TM, Avery GS. Tamoxifen: a review of its pharmacological properties and therapeutic use in the treatment of breast cancer. Drugs. 1978;16(1):1–24. c) Botti V, Menzel O, Staedler D. A state-of-the-art review of tamoxifen as a potential therapeutic for Duchenne muscular dystrophy. Front Pharmacol. 2022;13:1030785.
  • Koyama R, Hakamata W, Hirano T, Nishio T. Identification of small-molecule inhibitors of human Golgi mannosidase via a drug repositioning screen. Chem Pharm Bull (Tokyo). 2018;66(6):678–681.
  • a) Wang J, Zhao Y, Zhao W, Wang P, Li J. Total synthesis of N -butyl-1-deoxynojirimycin. J Carbohydr Chem. 2016;35(8-9):445–454. b) Schäfer W, Helferich B. α-Methyl d-glucoside. Org Synth. 1941;1:364–366. c) Li CW, Dong HJ, Cui CB. The synthesis and antitumor activity of twelve galloyl glucosides. Molecules. 2015;20(2):2034–2060. d) Fernández-Herrera MA, Mohan S, López-Muñoz H, Hernández-Vázquez JMV, Pérez-Cervantes E, Escobar-Sánchez ML, Sánchez-Sánchez L, Regla I, Pinto BM, Sandoval-Ramírez J, et al. Synthesis of the steroidal glycoside (25R)-3β,16β-diacetoxy-12,22-dioxo-5α-cholestan-26-yl β-d-glucopyranoside and its anti-cancer properties on cervicouterine HeLa, CaSki, and ViBo cells. Eur J Med Chem. 2010;45(11):4827–4837. e) Koppolu SR, Niddana R, Balamurugan R. Gold-catalysed glycosylation reaction using an easily accessible leaving group. Org Biomol Chem. 2015;13(18):5094–5097. f) Ma Y, Liu S, Xi Y, Li H, Yang K, Cheng Z, Wang W, Zhang Y. Highly stereoselective synthesis of aryl/heteroaryl- C-nucleosides via the merger of photoredox and nickel catalysis. Chem Commun (Camb)). 2019;55(97):14657–14660. g) Compain P, Decroocq C, Iehl J, Holler M, Hazelard D, Mena Barragán T, Ortiz Mellet C, Nierengarten J‐F. Glycosidase inhibition with fullerene iminosugar balls: a dramatic multivalent effect. Angew Chem Int Ed. 2010;49(33):5753–5756.
  • a) Marjanovic Trajkovic J, Milanovic V, Ferjancic Z, Saicic RN. On the asymmetric induction in proline-catalyzed aldol reactions: reagent-controlled addition reactions of 2,2-dimethyl-1,3-dioxane-5-one to acyclic chiral α-branched aldehydes. Eur J Org Chem. 2017;2017(41):6146–6153. b) Ferjancic Z, Saicic RN. Combining organocatalyzed aldolization and reductive amination: an efficient reaction sequence for the synthesis of iminosugars. Eur J Org Chem. 2021;2021(22):3241–3250.
  • Marjanovic J, Ferjancic Z, Saicic RN. Organocatalyzed synthesis of (−)-4-epi-fagomine and the corresponding pipecolic acids. Tetrahedron. 2015;71(38):6784–6789.
  • Trajkovic JM, Ferjancic Z, Saicic RN. A short stereoselective synthesis of (+)-aza-galacto-fagomine (AGF). Tetrahedron. 2017;73(18):2629–2632.
  • Carabateas PM, Surrey AR, Harris LS. and Antitussive activity of a new heterocyclic ring system. some 1,2-diazabicyclo[2.2.2]octanes. J Med Chem. 1964;7(3):293–297.
  • a) Trajkovic M, Balanac V, Ferjancic Z, Saicic RN. Total synthesis of (+)-swainsonine and (+)-8-epi-swainsonine. RSC Adv. 2014;4(96):53722–53724. b) Trajkovic M, Pavlovic M, Bihelovic F. Total synthesis of (+)-swainsonine, (–)-swainsonine, (+)-8-epi-swainsonine and (+)-dideoxy-imino-lyxitol by an organocatalyzed aldolization/reductive amination sequence. Nat Prod Commun. 2022;17(4):1934578X2210916.
  • a) Cao Y, Yang R, Lee I, Zhang W, Sun J, Wang W, Meng X. Characterization of the SARS‐CoV‐2 E protein: sequence, structure, viroporin, and inhibitors. Protein Sci. 2021;30(6):1114–1130. . b) Wang K, Xie S, Sun B. Viral proteins function as ion channels. Biochim Biophys Acta. 2011;1808(2):510–515. c) See Ref. 28 and in particular Ref. 28b, in which the authors contest the correlation of the inhibitory activity of DNJ on ER α-glucosidases with its anti-BVDV activity. [33813796]
  • a) Chang AY, Chau V, Landas JA, et al. Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI Methods. 2017;1:22–25. b) Yamamoto K, Nakayama A, Yamamoto Y, Tabata S. Val216 decides the substrate specificity of α-glucosidase in Saccharomyces cerevisiae. Eur J Biochem. 2004;271(16):3414–3420.
  • Trombetta ES, Simons JF, Helenius A. Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J Biol Chem. 1996;271(44):27509–27516.
  • a) Prodanović R, Milosavić N, Jovanović S, Prodanović O, Ćirković Veličković T, Vujčić Z, Jankov RM. Activity and stability of soluble and immobilized α-glucosidase from baker’s yeast in cosolvent systems. Biocatal Biotransform. 2006;24(3):195–200. b) https://www.graphpad.com/quickcalcs/linear1/. (last accessed 10 March 2023). c) Guce AI, Clark NE, Salgado EN, Ivanen DR, Kulminskaya AA, Brumer H, Garman SC. Catalytic mechanism of human α-galactosidase. J Biol Chem. 2010;285(6):3625–3632.
  • Ichikawa Y, Igarashi Y, Ichikawa M, Suhara Y. 1-N-Iminosugars: potent and selective inhibitors of β-glycosidases. J Am Chem Soc. 1998;120(13):3007–3018.
  • Bhuma N, Burade SS, Louat T, Herman J, Kawade S, Doshi PJ, Dhavale DD. Fluorinated piperidine iminosugars and their N-alkylated derivatives: synthesis, conformational analysis, immunosuppressive and glycosidase inhibitory activity studies. Tetrahedron. 2018;74(8):852–858.
  • a) Li Y, Liu D, Wang Y, Su W, Liu G, Dong W. The importance of glycans of viral and host proteins in enveloped virus infection. Front Immunol. 2021;12:638573. b) Jan J-T, Cheng T-JR, Juang Y-P, et al. Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection. Proc Natl Acad Sci USA. 2021;118(5):e2021579118.
  • Nunes-Santos CJ, Kuehn HS, Rosenzweig SD. N-glycan modification in COVID-19 pathophysiology: in vitro structural changes with limited functional effects. J Clin Immunol. 2021;41(2):335–344.
  • Guo, et al. reported that miglustat inhibits the entry of SARS-CoV into a host cell via a post-receptor-binding mechanism. See Ref.16.
  • Rajasekharan S, Milan Bonotto R, Nascimento Alves L, Kazungu Y, Poggianella M, Martinez-Orellana P, Skoko N, Polez S, Marcello A. Inhibitors of protein glycosylation are active against the coronavirus severe acute respiratory syndrome coronavirus SARS-CoV-2. Viruses. 2021;13(5):808.
  • a) Hoffmann M, Mösbauer K, Hofmann-Winkler H, Kaul A, Kleine-Weber H, Krüger N, Gassen NC, Müller MA, Drosten C, Pöhlmann S, et al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature. 2020;585(7826):588–590. b) Funnell SGP, Dowling WE, Muñoz-Fontela C, Gsell P-S, Ingber DE, Hamilton GA, Delang L, Rocha-Pereira J, Kaptein S, Dallmeier KH, et al. Emerging preclinical evidence does not support broad use of hydroxychloroquine in COVID-19 patients. Nat Commun. 2020;11(1):4253. c) Maisonnasse P, Guedj J, Contreras V, et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature. 2020;585:584–587.
  • Clarke EC, Nofchissey RA, Ye C, Bradfute SB. The iminosugars celgosivir, castanospermine and UV-4 inhibit SARS-CoV-2 replication. Glycobiology. 2021;31(4):378–384.
  • Franco EJ, Warfield KL, Brown AN. UV-4B potently inhibits replication of multiple SARS-CoV-2 strains in clinically relevant human cell lines. Front Biosci (Landmark Ed)). 2022;27(1):3.
  • Reyes H, Du Y, Zhou T, et al. Glucosidase inhibitors suppress SARS-CoV-2 in tissue culture and may potentiate. bioRxiv. 2021;2021.05.14.444190.
  • Karade SS, Franco EJ, Rojas AC, et al. Structure-based design of potent iminosugar inhibitors of endoplasmic reticulum α-glucosidase I with anti-SARS-CoV-2 activity. J Med Chem. 2023;66(4):2744–2760.
  • Overkleeft HS, Renkema GH, Neele J, et al. Generation of specific deoxynojirimycin-type inhibitors of the non-lysosomal glucosylceramidase. J Biol Chem. 1998;273(41):26522–26527.
  • Zu S, Luo D, Li L, et al. Tamoxifen and clomiphene inhibit SARS-CoV-2 infection by suppressing viral entry. Signal Transduct Target Ther. 2021;6(1):435.
  • Principle of multivalency: a) Ramos-Soriano J, Rojo J. Glycodendritic structures as DC-SIGN binders to inhibit viral infections. Chem Commun (Camb). 2021;57(42):5111–5126. b) Schneider JP, Tommasone S, Della Sala P, et al. Synthesis and glycosidase inhibition properties of calix[8]arene-based iminosugar click clusters. Pharmaceuticals. 2020;13(11):366. c) Illescas BM, Rojo J, Delgado R, et al. Multivalent glycosylated nanostructures to inhibit Ebola virus infection. J Am Chem Soc. 2017;139(17):6018–6025.
  • а) Protein Preparation Wizard. Epik. New York (NY): Schrödinger, LLC; 2021. b) Impact. New York (NY): Schrödinger, LLC; c) Prime. New York (NY): Schrödinger, LLC; 2021. d) Madhavi Sastry G, Adzhigirey M, Day T, et al. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27(3):221–234.
  • Schrödinger release 2021–4: Maestro. New York (NY): Schrödinger, LLC.
  • a) Schrödinger Release 2021-1: Epik, Schrödinger, LLC, New York, NY, 2021. b) Shelley JC, Cholleti A, Frye LL, et al. Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des. 2007;21(12):681–691.
  • a) Schrödinger release 2021–4: Glide. New York (NY): Schrödinger, LLC; 2021. b) Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006; 49:6177–6196.
  • BIOVIA Discovery Studio 2021 Client. San Diego: Dassault Systèmes; 2021.
  • a) Harwood LM. Dry-column flash chromatography. Aldrichimica Acta. 1985;18(1):25. b) Furniss BS, Hannaford AJ, Smith PWG, et al. Dry-column flash chromatography. Vogel’s Textbook of Practical Organic Chemistry. 5th ed. London: Longman Scientific & Technical; 1989. p. 220. c) Pedersen D, Rosenbohm C. Dry column vacuum chromatography. Synthesis (Stuttg). 2004; 2001(16):2431–2434.
  • Perrin DD, Armarego WLF. Purification of laboratory chemicals. 3rd ed. Oxford: Pergamon Press; 1988.
  • Messner M, Kozhushkov SI, de Meijere A. Nickel- and palladium-catalyzed cross-coupling reactions at the bridgehead of bicyclo[1.1.1]pentane derivatives - a convenient access to liquid crystalline compounds containing bicyclo[1.1.1]pentane moieties. Eur J Org Chem. 2000;2000(7):1137–1155.
  • Caputo DFJ, Arroniz C, Dürr AB, Mousseau JJ, Stepan AF, Mansfield SJ, Anderson EA. Synthesis and applications of highly functionalized 1-halo-3-substituted bicyclo[1.1.1]pentanes. Chem Sci. 2018;9(23):5295–5300.
  • Wennekes T, Lang B, Leeman M, Marel G. A v d, Smits E, Weber M, Wiltenburg J. v, Wolberg M, Aerts JMFG, Overkleeft HS. Large-scale synthesis of the glucosylceramide synthase inhibitor N-[5-(adamantan-1-yl-methoxy)-pentyl]-1-deoxynojirimycin. Org Process Res Dev. 2008;12(3):414–423.
  • Wennekes T, Meijer AJ, Groen AK, Boot RG, Groener JE, van Eijk M, Ottenhoff R, Bijl N, Ghauharali K, Song H, et al. Dual-action lipophilic iminosugar improves glycemic control in obese rodents by reduction of visceral glycosphingolipids and buffering of carbohydrate assimilation. J Med Chem. 2010;53(2):689–698.