1,010
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative metabolic study of the chloroform fraction of three Cystoseira species based on UPLC/ESI/MS analysis and biological activities

ORCID Icon, , , , , , ORCID Icon & ORCID Icon show all
Article: 2292482 | Received 07 Oct 2023, Accepted 04 Dec 2023, Published online: 12 Dec 2023

References

  • Aly SH, Elhawary EA, Elissawy AM, Mostafa NM, Eldahshan OA, Singab ANB. 2023. Brown Algae (Phaeophyta) source of different phytochemical and their medicinal application. In: Bachheti A, Bachheti RK, Husen A, editors. Aquatic Medicinal Plants. 1st Edition. England, UK: CRC Press; p. 24.
  • Kosanić M, Ranković B, Stanojković T. Biological potential of marine macroalgae of the genus Cystoseira. Acta Biol Hung. 2015;66(4):374–384.
  • Aly SH, Elissawy AM, Salah D, Alfuhaid NA, Zyaan OH, Mohamed HI, Singab ANB, Farag SM. Phytochemical investigation of three Cystoseira species and their larvicidal activity supported with in silico studies. Mar Drugs. 2023;21(2):117.
  • Elnaggar MS, Elissawy AM, Youssef FS, Kicsák M, Kurtán T, Singab ANB, Kalscheuer R. Austalide derivative from marine-derived Aspergillus sp. and evaluation of its cytotoxic and ADME/TOPKAT properties. RSC Adv. 2023;13(24):16480–16487.
  • Sellimi S, Maalej H, Rekik DM, Benslima A, Ksouda G, Hamdi M, Sahnoun Z, Li S, Nasri M, Hajji M. Antioxidant, antibacterial and in vivo wound healing properties of laminaran purified from Cystoseira barbata seaweed. Int J Biol Macromol. 2018;119:633–644.
  • Abu-Khudir R, Ismail GA, Diab T. Antimicrobial, antioxidant, and anti-tumor activities of Sargassum linearifolium and Cystoseira crinita from Egyptian Mediterranean Coast. Nutr Cancer. 2021;73(5):829–844.
  • Mhadhebi L, Mhadhebi A, Robert J, Bouraoui A. Antioxidant, anti-inflammatory and antiproliferative effects of aqueous extracts of three mediterranean brown seaweeds of the Genus Cystoseira. Iran J Pharm Res. 2014;13(1):207–220.
  • De Los Reyes C, Zbakh H, Motilva V, Zubía E. Antioxidant and anti-inflammatory meroterpenoids from the brown alga Cystoseira usneoides. J Nat Prod. 2013;76(4):621–629.
  • Valls R, Piovetti L. The chemistry of the Cystoseiraceae (Fucales: Pheophyceae): chemotaxonomic relationships. Biochem Syst Ecol. 1995;23(7-8):723–745.
  • Amico V. Marine brown algae of family Cystoseiraceae: chemistry and chemotaxonomy. Phytochemistry. 1995;39(6):1257–1279.
  • Çelenk FG, Sukatar A. Macroalgae of izmir gulf: Cystoseira barbata, Cystoseira compressa and Cystoseira crinita species have high α-glucosidase and moderate pancreatic lipase inhibition activities. Iran J Pharm Res. 2020;19(2):391–402.
  • Ayyad SEN, Abdel-Halim OB, Shier WT, Hoye TR. Cytotoxic hydroazulene diterpenes from the brown alga Cystoseira myrica. Z Naturforsch C J Biosci. 2003;58(1-2):33–38.
  • Fisch KM, Böhm V, Wright AD, König GM. Antioxidative meroterpenoids from the brown alga Cystoseira crinita. J Nat Prod. 2003;66(7):968–975.
  • Fattorusso E, Magno S, Mayol L, Santacroce C, Sica D, Amico V, Oriente G, Piattelli M, Tringali C. Oxocrinol and crinitol, novel linear terpenoids from the brown alga Cystoseira crinita. Tetrahedron Lett. 1976;17(12):937–940.
  • De Los Reyes C, Ortega MJ, Zbakh H, Motilva V, Zubía E. Cystoseira usneoides: A Brown Alga Rich in Antioxidant and Anti-inflammatory Meroditerpenoids. J Nat Prod. 2016;79(2):395–405.
  • Mansur AA, Brown MT, Billington RA. The cytotoxic activity of extracts of the brown alga Cystoseira tamariscifolia (Hudson) Papenfuss, against cancer cell lines changes seasonally. J Appl Phycol. 2020;32(4):2419–2429.
  • Malik JA, Aly SH, Hajam YA, Quazi S. 2022. How Metabolomics Shapes the Future of Drugs in Antidiabetic Plants. In: Antidiabetic Potential Plants Era Omi. United States: Apple Academic Press; p. 353–372.
  • Etxeberria U, de la Garza AL, Campión J, Martínez JA, Milagro FI. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Targets. 2012;16(3):269–297.
  • Sakthivel R, Devi KP. Antioxidant, anti-inflammatory and anticancer potential of natural bioactive compounds from seaweeds. Stud Nat Prod Chem. 2019;63:113–160.
  • Lim CS, Jin DQ, Sung JY, Lee JH, Choi HG, Ha I, Han JS. Antioxidant and anti-inflammatory activities of the methanolic extract of Neorhodomela aculeate in hippocampal and microglial cells. Biol Pharm Bull. 2006;29(6):1212–1216.
  • Maneesh A, Chakraborty K, Makkar F. Pharmacological activities of brown seaweed Sargassum wightii (Family Sargassaceae) using different in vitro models. Int J Food Prop. 2017;20(4):931–945.
  • Hagaggi NSA, Abdul-Raouf UM. Macroalga-associated bacterial endophyte bioactive secondary metabolites twinning: Cystoseira myrica and its associated Catenococcus thiocycli QCm as a model. World J Microbiol Biotechnol. 2022;38(11):205.
  • Gómez Garreta A, Gallardo T, Ribera MA, Cormaci M, Furnari G, Giaccone GB. Checklist of Mediterranean Seaweeds. Bot Mar. 2001;44(2001):425–460.
  • Ramus J, Beale SI, Mauzerall D, Howard KL. Changes in photosynthetic pigment concentration in seaweeds as a function of water depth. Mar Biol. 1976;37(3):223–229.
  • Prasanna R, Sood A, Suresh A, Nayak S, Kaushik BD. Potentials and applications of algal pigments in biology and industry. Acta Bot Hung. 2007;49(1-2):131–156.
  • Bouafif C, Verlaque M, Langar H. Cystoseira taxa new for the marine flora of Tunisia. Cryptogam Algol. 2014;35(3):269–283.
  • Ibraheem IBM, Alharbi RM, Abdel-Raouf N, Al-Enazi NM. Contributions to the study of the marine algae inhabiting Umluj Seashore, Red Sea. Beni-Suef Univ J Basic Appl Sci. 2014;3(4):278–285.
  • El-Nashar HAS, Sayed AM, El-Sherief HAM, Rateb ME, Akil L, Khadra I, Majrashi TA, Al-Rashood ST, Binjubair FA, El Hassab MA, et al. Metabolomic profile, anti-trypanosomal potential and molecular docking studies of Thunbergia grandifolia. J Enzyme Inhib Med Chem. 2023;38(1):2199950.,.
  • Chougale AD, Ghadyale VA, Panaskar SN, Arvindekar AU. Alpha glucosidase inhibition by stem extract of Tinospora cordifolia. J Enzyme Inhib Med Chem. 2009;24(4):998–1001.
  • Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006;97(4):654–660.
  • Aly SH, Elissawy AM, Mahmoud AMA, El-Tokhy FS, Mageed SSA, Almahli H, Al-Rashood ST, Binjubair FA, Hassab MAE, Eldehna WM, et al. Synergistic Effect of Sophora japonica and Glycyrrhiza glabra Flavonoid-Rich Fractions on Wound Healing: In Vivo and Molecular Docking Studies. Molecules. 2023;28(7):2994.
  • Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965;16(3):144–158.
  • Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Methods Enzymol. Vol. 299. Elsevier; p. 152–178.
  • Chang C-C, Yang M-H, Wen H-M, Chern J-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10(3):178–182.
  • Yen GC, Duh PD. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J Agric Food Chem. 1994;42(3):629–632.
  • Al Zahrani NA, El-Shishtawy RM, Elaasser MM, Asiri AM. Synthesis of novel chalcone-based phenothiazine derivatives as antioxidant and anticancer agents. Molecules. 2020;25(19):4566.
  • Ferreira ICFR, Baptista P, Vilas-Boas M, Barros L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 2007;100(4):1511–1516.
  • Canabady-Rochelle LLS, Harscoat-Schiavo C, Kessler V, Aymes A, Fournier F, Girardet J-M. Determination of reducing power and metal chelating ability of antioxidant peptides: revisited methods. Food Chem. 2015;183:129–135.
  • Mohammed HS, Abdel-Aziz MM, Abu-Baker MS, Saad AM, Mohamed MA, Ghareeb MA. Antibacterial and potential antidiabetic activities of flavone C-glycosides isolated from Beta vulgaris subspecies cicla L. var. flavescens (Amaranthaceae) cultivated in Egypt. Curr Pharm Biotechnol. 2019;20(7):595–604.
  • El-Nashar HAS, Eldehna WM, Al-Rashood ST, Alharbi A, Eskandrani RO, Aly SH. GC/MS Analysis of Essential Oil and Enzyme Inhibitory Activities of Syzygium cumini (Pamposia) Grown in Docking Studies. Molecules. 2021;26(22):6984.
  • Narkhede MB, Ajimire PV, Wagh AE, Mohan M, Shivashanmugam AT. In vitro antidiabetic activity of Caesalpina digyna (R.) methanol root extract. Asian J Plant Sci Res. 2011;1(2):101–106.
  • Zengin G, Uysal A, Gunes E, Aktumsek A. Survey of phytochemical composition and biological effects of three extracts from a wild plant (Cotoneaster nummularia Fisch. et Mey.): a potential source for functional food ingredients and drug formulations. PLoS One. 2014;9(11):e113527.
  • Buzzi M, Henderson RJ, Sargent JR. The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout (Oncorhynchus mykiss) fed diets containing fish oil or olive oil. Biochim Biophys Acta. 1996;1299(2):235–244.
  • Brzozowski AM, Davies GJ. Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 A resolution. Biochemistry. 1997;36(36):10837–10845.
  • Karade SS, Hill ML, Kiappes JL, Manne R, Aakula B, Zitzmann N, Warfield KL, Treston AM, Mariuzza RA. N-Substituted Valiolamine Derivatives as Potent Inhibitors of Endoplasmic Reticulum α-Glucosidases I and II with Antiviral Activity. J Med Chem. 2021;64(24):18010–18024.
  • Cingolani G, Panella A, Perrone MG, Vitale P, Di Mauro G, Fortuna CG, Armen RS, Ferorelli S, Smith WL, Scilimati A. Structural basis for selective inhibition of Cyclooxygenase-1 (COX-1) by diarylisoxazoles mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6). Eur J Med Chem. 2017;138:661–668.
  • Lai X, Wichers HJ, Soler-Lopez M, Dijkstra BW. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis. Angew Chem Int Ed Engl. 2017;56(33):9812–9815.
  • Vilar S, Cozza G, Moro S. Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Curr Top Med Chem. 2008;8(18):1555–1572.
  • Hassab ME, Fares M, Amin MKA, Al-Rashood ST, Alharbi A, Eskandrani RO, Alkahtani HM, Eldehna WM. Toward the Identification of Potential α-Ketoamide Covalent Inhibitors for SARS-CoV-2 Main Protease: Fragment-Based Drug Design and MM-PBSA Calculations. Processes. 2021;9(6):1004.
  • Amico V, Oriente G, Piattelli M, Ruberto G, Tringali C. Novel acyclic diterpenes from the brown alga Cystoseira crinita. Phytochemistry. 1981;20(5):1085–1088.
  • El Amrani Zerrifi S, El Khalloufi F, Mugani R, El Mahdi R, Kasrati A, Soulaimani B, Barros L, Ferreira ICFR, Amaral JS, Finimundy TC, et al. Seaweed essential oils as a new source of bioactive compounds for cyanobacteria growth control: Innovative ecological biocontrol approach. Toxins (Basel). 2020;12(8):527.
  • Mokrini R, Mesaoud M, Ben Daoudi M, Hellio C, Maréchal JP, El Hattab M, Ortalo-Magné A, Piovetti L, Culioli G. Meroditerpenoids and derivatives from the brown alga Cystoseira baccata and their antifouling properties. J Nat Prod. 2008;71(11):1806–1811.
  • Fernández JJ, Navarro G, Norte M. Novel metabolites from the brown alga Cystoseira abies marina. Nat Prod Lett. 1998;12(4):285–291.
  • El Hattab M, Genta-Jouve G, Bouzidi N, Ortalo-Magné A, Hellio C, Maréchal JP, Piovetti L, Thomas OP, Culioli G. Cystophloroketals A-E, Unusual Phloroglucinol-Meroterpenoid Hybrids from the Brown Alga Cystoseira tamariscifolia. J Nat Prod. 2015;78(7):1663–1670.
  • Joung EJ, Cao L, Lee B, Gwon WG, Park SH, Kim HR. Sargahydroquinoic acid, a cyclooxygenase-2 inhibitor, attenuates inflammatory responses by regulating NF-κB inactivation and Nrf2 activation in lipopolysaccharide-stimulated cells. Inflammation. 2021;44(5):2120–2131.
  • Custódio L, Silvestre L, Rocha MI, Rodrigues MJ, Vizetto-Duarte C, Pereira H, Barreira L, Varela J. Methanol extracts from Cystoseira tamariscifolia and Cystoseira nodicaulis are able to inhibit cholinesterases and protect a human dopaminergic cell line from hydrogen peroxide-induced cytotoxicity. Pharm Biol. 2016;54(9):1687–1696.
  • Glombitza K, Schmidt A. Nonhalogenated and halogenated phlorotannins from the brown alga Carpophyllum angustifolium. J Nat Prod. 1999;62(9):1238–1240.
  • Vizetto-Duarte C, Pereira H, De Sousa CB, Rauter AP, Albericio F, Custódio L, Barreira L, Varela J. Fatty acid profile of different species of algae of the Cystoseira genus: A nutraceutical perspective. Nat Prod Res. 2015;29(13):1264–1270.
  • Aly SH, Kandil NH, Hemdan RM, Kotb SS, Zaki SS, Abdelaziz OM, AbdelRazek MMM, Almahli H, El Hassab MA, Al-Rashood ST, et al. GC/MS profiling of the essential oil and lipophilic extract of Moricandia sinaica Boiss. and evaluation of their cytotoxic and antioxidant activities. Molecules. 2023;28(5):2193.
  • Elebeedy D, Ghanem A, Aly SH, Ali MA, Faraag AHI, El-Ashrey MK, Salem AM, Hassab ME, Maksoud AE. Synergistic antiviral activity of Lactobacillus acidophilus and Glycyrrhiza glabra against Herpes Simplex-1 Virus (HSV-1) and Vesicular Stomatitis Virus (VSV): experimental and In Silico insights. BMC Microbiol. 2023;23(1):173.
  • Aly SH, El-Hassab MA, Elhady SS, Gad HA. Comparative metabolic study of Tamarindus indica L.’s various organs based on GC/MS analysis, In Silico and In Vitro anti-inflammatory and wound healing activities. Plants (Basel). 2023;12(1):87.
  • Yu Q, Fan L, Duan Z. Five individual polyphenols as tyrosinase inhibitors: Inhibitory activity, synergistic effect, action mechanism, and molecular docking. Food Chem. 2019;297:124910.
  • Vlachogianni IC, Fragopoulou E, Kostakis IK. 2014. Accepted Manuscript.
  • Cos P, Rajan P, Vedernikova I, Calomme M, Pieters L, Vlietinck AJ, Augustyns K, Haemers A, Berghe D. Vanden In Vitro Antioxidant Profile of Phenolic Acid Derivatives. Free Radic Res. 2002;36(6):711–716.
  • Fuloria NK, Raheja RK, Shah KH, Oza MJ, Kulkarni YA, Subramaniyan V, Sekar M, Fuloria S. Biological activities of meroterpenoids isolated from different sources. Front Pharmacol. 2022;13:830103.
  • Čagalj M, Skroza D, Razola-Díaz MDC, Verardo V, Bassi D, Frleta R, Mekinić IG, Tabanelli G, Šimat V. Variations in the Composition, Antioxidant and Antimicrobial Activities of Cystoseira compressa during Seasonal Growth. Mar Drugs. 2022;20(1):64.
  • Benslima A, Sellimi S, Hamdi M, Nasri R, Jridi M, Cot D, Li S, Nasri M, Zouari N. Brown seaweed Cystoseira schiffneri as a promising source of sulfated fucans: Seasonal variability of structural, chemical, and antioxidant properties. Food Sci Nutr. 2021;9(3):1551–1563.
  • Saber FR, Aly SH, Khallaf MA, El-Nashar HAS, Fahmy NM, El-Shazly M, Radha R, Prakash S, Kumar M, Taha D, et al. Hyphaene thebaica (Areceaeae) as a Promising Functional Food: Extraction, Analytical Techniques, Bioactivity, Food, and Industrial Applications. Food Anal Methods. 2022;16(9-10):1447–1467.
  • Saber FR, Munekata PES, Rizwan K, El-Nashar HAS, Fahmy NM, Aly SH, El-Shazly M, Bouyahya A, Lorenzo JM. Family Myrtaceae: The treasure hidden in the complex/diverse composition. Crit Rev Food Sci Nutr. 2023;7:1–19.
  • Aly SH, Eldahshan OA, Al-Rashood ST, Binjubair FA, Hassab ME, Eldehna WM, Acqua SD, Zengin G. Chemical constituents, antioxidant, and enzyme inhibitory activities supported by in-silico study of n-hexane extract and essential oil of Guava leaves. Molecules. 2022;27(24):8979.
  • De La Fuente G, Fontana M, Asnaghi V, Chiantore M, Mirata S, Salis A, Damonte G, Scarfì S. The remarkable antioxidant and anti-inflammatory potential of the extracts of the brown alga cystoseira amentacea var. stricta. Mar Drugs. 2021;19(1):2.
  • Zbakh H, Zubía E, de los Reyes C, Calderón-Montaño JM, López-Lázaro M, Motilva V. Meroterpenoids from the brown alga cystoseira usneoides as potential anti-inflammatory and lung anticancer agents. Mar Drugs. 2020;18(4):207.
  • Sahnoun M, Trabelsi S, Bejar S. Citrus flavonoids collectively dominate the α-amylase and α-glucosidase inhibitions. Biol. 2017;72(7):764–773.
  • Enomoto H, Takahashi S, Takeda S, Hatta H. Distribution of flavan-3-ol species in ripe strawberry fruit revealed by matrix-assisted laser desorption/ionization-mass spectrometry imaging. Molecules. 2020;25(1):2373.
  • Sun J, Liang F, Bin Y, Li P, Duan C. Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules. 2007;12(3):679–693.
  • Tine Y, Renucci F, Costa J, Wélé A, Paolini J. A method for LC-MS/MS profiling of coumarins in zanthoxylum zanthoxyloides (Lam.) B. Zepernich and timler extracts and essential oils. Molecules. 2017;22(1):174.
  • Simirgiotis MJ, Benites J, Areche C, Sepúlveda B. Antioxidant capacities and analysis of phenolic compounds in three endemic nolana species by HPLC-PDA-ESI-MS. Molecules. 2015;20(6):11490–11507.
  • Ads EN, Rajendrasozhan S, Hassan SI, Sharawy SMS, Humaidi JR. Phytochemical screening of different organic crude extracts from the stem bark of Ziziphus spina-christi (L.). biomedicalresearch. 2018;29(8):1645–1652.
  • Barros L, Dueñas M, Dias MI, Sousa MJ, Santos-Buelga C, Ferreira ICFR. Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusions. Food Chem. 2013;136(1):1–8.
  • Farag MA, Gad HA, Heiss AG, Wessjohann LA. Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC-MS coupled to chemometrics. Food Chem. 2014;151:333–342.
  • Li X, Xiao H, Liang X, Shi D, Liu J. LC-MS/MS determination of naringin, hesperidin and neohesperidin in rat serum after orally administrating the decoction of Bulpleurum falcatum L. and Fractus aurantii. J Pharm Biomed Anal. 2004;34(1):159–166.
  • Patil SH, Kurlapkar DD, Gaikwad DK. Phytochemical characterization of natural dye extracted from Senna siamea Pods. Open Access Libr J. 2020;07(04):1–11.
  • de Souza Mesquita LM, Rodrigues CFB, da Rocha CQ, Bianchim MS, Rodrigues CM, de Oliveira VM, Gaeta HH, Belchor MN, Toyama MH, Vilegas W. LC–ESI–IT-MS/MS and MALDI-TOF Approach: identification of natural polymers from Rhizophora mangle barks and determination of their analgesic and anti-inflammatory properties. Nat Prod Bioprospect. 2019;9(1):23–34.
  • Ayoub IM, Korinek M, El-Shazly M, Wetterauer B, El-Beshbishy HA, Hwang T-L, Chen B-H, Chang F-R, Wink M, Singab ANB, et al. Activity of Chasmanthe aethiopica leaf extract and its profiling using LC/MS and GLC/MS. Plants. 2021;10(6):1118.
  • Ben SR, Hamed AI, Mahalel UA, Al-Ayed AS, Kowalczyk M, Moldoch J, Oleszek W, Stochmal A. Tentative characterization of polyphenolic compounds in the male flowers of Phoenix dactylifera by liquid chromatography coupled with mass spectrometry and DFT. Int J Mol Sci. 2017;18(3):1–18.
  • Chen G, Li X, Saleri F, Guo M. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules. 2016;21(10):1275.
  • Salih EYA, Fyhrquist P, Abdalla AMA, Abdelgadir AY, Kanninen M, Sipi M, Luukkanen O, Fahmi MKM, Elamin MH, Ali HA. LC-MS/MS tandem mass spectrometry for analysis of phenolic compounds and pentacyclic triterpenes in antifungal extracts of Terminalia brownii (Fresen). Antibiotics (Basel). 2017;6(4):37.
  • Yao H, Chen B, Zhang Y, Ou H, Li Y, Li S, Shi P, Lin X. Analysis of the total biflavonoids extract from Selaginella doederleinii by HPLC-QTOF-MS and its in vitro and in vivo anticancer effects. Molecules. 2017;22(2):325.
  • Lou J, Yu R, Wang X, Mao Z, Fu L, Liu Y, Zhou L. Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities. Braz J Microbiol. 2016;47(1):96–101.
  • López-Angulo G, Montes-Avila J, Díaz-Camacho SP, Vega-Aviña R, López-Valenzuela JÁ, Delgado-Vargas F. 2018. Comparison of terpene and phenolic profles of three wild species of Echeveria (Crassulaceae). J Appl Bot Food Qual. 91:145–154.