1,874
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A multidisciplinary approach to the antioxidant and hepatoprotective activities of Arbutus pavarii Pampan fruit; in vitro and in Vivo biological evaluations, and in silico investigations

, , , , , , , , , , ORCID Icon & show all
Article: 2293639 | Received 07 Sep 2023, Accepted 07 Dec 2023, Published online: 28 Dec 2023

References

  • Chopra B, Dhingra AK. Natural products: A lead for drug discovery and development. Phytother Res. 2021;35(9):4660–4702.
  • Mohammed HA, Emwas AH, Khan RA. Salt-tolerant plants, halophytes, as renewable natural resources for cancer prevention and treatment: roles of phenolics and flavonoids in immunomodulation and suppression of oxidative stress towards cancer management. Int J Mol Sci. 2023;24(6):5171.
  • Mohammed HA, Khan RA, Singh V, et al. Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high-incidence cancers, and other diseases: Roles of preparation methods, lipid composition, transitional stability, and release profiles in nanocarriers’ development. Nanotechnol Rev. 2023;12(1):20220517.
  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71.
  • Negi AS, Jain S. Recent advances in natural product-based anticancer agents. Stud Nat Prod Chem. 2022;75:367–447.
  • Bardaweel SK, Gul M, Alzweiri M, Ishaqat A, ALSalamat HA, Bashatwah RM. Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. Eurasian J Med. 2018;50(3):193–201.
  • Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–383.
  • Chapple ILC. Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol. 1997;24(5):287–296.
  • Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol. 2019;34(6):975–991.
  • Dhahri M, Alghrably M, Mohammed HA, Badshah SL, Noreen N, Mouffouk F, Rayyan S, Qureshi KA, Mahmood D, Lachowicz JI, et al. Natural Polysaccharides as Preventive and Therapeutic Horizon for Neurodegenerative Diseases. Pharmaceutics. 2021;14(1):1.
  • Wagner H, Cheng JW, Ko EY. Role of reactive oxygen species in male infertility: An updated review of literature. Arab J Urol. 2018;16(1):35–43.
  • Zhang Z, Dalan R, Hu Z, Wang J‐W, Chew NW, Poh K‐K, Tan R‐S, Soong TW, Dai Y, Ye L, et al. Reactive oxygen species scavenging nanomedicine for the treatment of ischemic heart disease. Adv Mater. 2022;34(35):2202169.
  • Ozougwu JC. Physiology of the liver. International Journal of Research in Pharmacy and Biosciences. 2017;4(8):13–24.
  • Wang J, He W, Tsai P-J, Chen P-H, Ye M, Guo J, Su Z. Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease. Lipids Health Dis. 2020;19(1):72.
  • Cichoż-Lach H, Michalak A. Oxidative stress as a crucial factor in liver diseases. World J Gastroenterol. 2014;20(25):8082–8091.
  • Almatroodi SA. Therapeutic Implication of Honey against Chronic Carbon Tetrachloride-Induced Liver Injury via Enhancing Antioxidant Potential and Maintenance of Liver Tissue Architecture. PJ. 2021;13(2):542–549.
  • Devi A, Dwibedi V, Khan ZA. Natural antioxidants in new age-related diseases. Rev Bras Farmacogn. 2021;31(4):387–407. Published online
  • Engwa GA. Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. Phytochemicals: Source of Antioxidants and Role in Disease Prevention BoD–Books on Demand. 2018;7:49–74.
  • Mohammed HA, Almahmoud SA, Arfeen M, Srivastava A, El-Readi MZ, Ragab EA, Shehata SM, Mohammed SAA, Mostafa EM, El-Khawaga HA, et al. Phytochemical profiling, molecular docking, and in vitro anti-hepatocellular carcinoid bioactivity of Suaeda vermiculata extracts. Arabian J Chem. 2022;15(7):103950.
  • Flora K, Hahn M, Rosen H, Benner K. Milk thistle (Silybum marianum) for the therapy of liver disease. Am J Gastroenterol. 1998;93(2):139–143.
  • Gargoum HM, Muftah SS, Al Shalmani S, et al. Phytochemical screening and investigation of the effect of Alhagi maurorum (camel thorn) on carbon tetrachloride, acetaminophen and adriamycin induced toxicity in experimental animals. Journal of Scientific and Innovative Research. 2013;2(6):1023–1033.
  • Nahar L, Al Groshi A, Sarker SD. Arbutus pavarii Pamp.–An updated profile. Trends in Phytochemical Research. 2021;5(2):45–46.
  • Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384–13421.
  • Elshibani FA, Mohammed HA, Abouzied AS, Kh. Abdulkarim A, Khan RA, Almahmoud SA, Huwaimel B, Alamami AD. Phytochemical and biological activity profiles of Thymbra linearifolia: An exclusively native species of Libyan Green Mountains. Arabian J Chem. 2023;16(6):104775. Published online
  • Rugaie OA, Mohammed HA, Alsamani S, Messaoudi S, Aroua LM, Khan RA, Almahmoud SA, Altaleb AD, Alsharidah M, Aldubaib M, et al. Antimicrobial, Antibiofilm, and Antioxidant Potentials of Four Halophytic Plants, Euphorbia chamaesyce, Bassia arabica, Fagonia mollis, and Haloxylon salicornicum, Growing in Qassim Region of Saudi Arabia: Phytochemical Profile and In Vitro and In Silico. Antibiotics. 2023;12(3):501.
  • Buzgaia N, Lee SY, Rukayadi Y, Abas F, Shaari K. Antioxidant activity, α-glucosidase inhibition and UHPLC–ESI–MS/MS profile of shmar (Arbutus pavarii Pamp). Plants. 2021;10(8):1659.
  • Arivalagan M, Roy TK, Yasmeen AM, Pavithra KC, Jwala PN, Shivasankara KS, Manikantan MR, Hebbar KB, Kanade SR. Extraction of phenolic compounds with antioxidant potential from coconut (Cocos nucifera L.) testa and identification of phenolic acids and flavonoids using UPLC coupled with TQD-MS/MS. LWT. 2018;92:116–126.
  • Maldini M, D'Urso G, Pagliuca G, Petretto GL, Foddai M, Gallo FR, Multari G, Caruso D, Montoro P, Pintore G, et al. HPTLC-PCA complementary to HRMS-PCA in the case study of Arbutus unedo antioxidant phenolic profiling. Foods. 2019;8(8):294.
  • Singh A, Bajpai V, Kumar S, Sharma KR, Kumar B. Profiling of gallic and ellagic acid derivatives in different plant parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Nat Prod Commun. 2016;11(2):1934578X1601100. 1934578X1601100227.
  • Salam HS, Tawfik MM, Elnagar MR, Mohammed HA, Zarka MA, Awad NS. Potential Apoptotic Activities of Hylocereus undatus Peel and Pulp Extracts in {MCF}-7 and Caco-2 Cancer Cell Lines. Plants. 2022;11(17):2192.
  • Tsang C, Auger C, Mullen W, Bornet A, Rouanet J-M, Crozier A, Teissedre P-L. The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Br J Nutr. 2005;94(2):170–181.
  • Kumar S, Singh A, Kumar B. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J Pharm Anal. 2017;7(4):214–222.
  • Lawal U, Leong SW, Shaari K, Ismail IS, Khatib A, Abas F. α‐glucosidase inhibitory and antioxidant activities of Different Ipomoea aquatica cultivars and LC–MS/MS profiling of the active cultivar. J Food Biochem. 2017;41(2):e12303.
  • Sandhu AK, Gu L. Antioxidant capacity, phenolic content, and profiling of phenolic compounds in the seeds, skin, and pulp of Vitis rotundifolia (muscadine grapes) as determined by HPLC-DAD-ESI-MS n. J Agric Food Chem. 2010;58(8):4681–4692.
  • Li Z-H, Guo H, Xu W-B, Ge J, Li X, Alimu M, He D-J. Rapid identification of flavonoid constituents directly from PTP1B inhibitive extract of raspberry (Rubus idaeus L.) leaves by HPLC–ESI–QTOF–MS-MS. J Chromatogr Sci. 2016;54(5):805–810.
  • Pacheco MT, Escribano-Bailón MT, Moreno FJ, Villamiel M, Dueñas M. Determination by HPLC-DAD-ESI/MSn of phenolic compounds in Andean tubers grown in Ecuador. J Food Compos Anal. 2019;84:103258.
  • Faso B. DPPH Free Radical Scavenging Activity of Two Extracts from Agelanthus dodoneifolius (Loranthaceae) Leaves. Int J Toxicol Pharmacol Res. 2016;8:29–34.
  • Mohammed HA. Phytochemical Analysis, Antioxidant Potential, and Cytotoxicity Evaluation of Traditionally Used Artemisia absinthium L.(Wormwood) Growing in the Central Region of Saudi Arabia. Plants. 2022;11(8):1028.
  • Mohammed HA, Abdulkarim AKh, Alamami AD, Elshibani FA. Phytochemical Constituents and Biological Activities of Jasonia glutinosa L.: The First Report for the Plant Growing in North Africa. J Chem. 2022;2022:1–11. nez EJLM, ed.
  • Elshibani F, Faisa A, Abdullah A, Seham EH. In-vitro and in-vivo anti-hyperglycemic activity of methanolic extract of Arbutus pavarii Pampan and Sarcopoterium spinosum L. growing in Libya. Inter J Curr Res Chem Pharm Sci. 2020;7(7):1–10.
  • El Morsy EM, Kamel R. Protective effect of artichoke leaf extract against paracetamol-induced hepatotoxicity in rats. Pharm Biol. 2015;53(2):167–173.
  • Dkhil MA, Abdel Moneim AE, Hafez TA, Mubaraki MA, Mohamed WF, Thagfan FA, Al-Quraishy S. Myristica fragrans kernels prevent paracetamol-induced hepatotoxicity by inducing anti-apoptotic genes and nrf2/ho-1 pathway. Int J Mol Sci. 2019;20(4):993.
  • Jackson P, Blythe D. Theory Practice of histological techniques. SK Suvarna, C Layton, JD Bancroft (Eds 7th ed Ch 18 Philadelphia: Churchill Livingstone of El Sevier. Published online 2013.
  • Chen J, Xuan Y-H, Luo M-X, Ni X-G, Ling L-Q, Hu S-J, Chen J-Q, Xu J-Y, Jiang L-Y, Si W-Z, et al. Kaempferol alleviates acute alcoholic liver injury in mice by regulating intestinal tight junction proteins and butyrate receptors and transporters. Toxicology. 2020;429:152338.
  • Rasheed RA, Embaby AS, Elkhamisy FAA, Mohamed MO, Abbasi AM, Ghaly WBA, Elshaer MMA, Almaary KS, Almoatasem MAM. Ascorbic acid alleviates oxidative stress and improves major salivary glands’ structure and function in diabetic rats: A histological and immunohistochemical study. J King Saud Univ Sci. 2022;34(7):102273.
  • Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021;61(8):3891–3898.
  • Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009;31(2):455–461. Published online NA-NA.
  • Biovia DS. Discovery Studio Visualizer v21.1.0.20298. BIOVIA, Dassault Systèmes. 2005.
  • El Hawary SSE, Shabrawy AER, Ezzat SM, El-Shibani FAA. Evaluation of the phenolic and flavonoid contents, antimicrobial and cytotoxic activities of some plants growing in Al Jabal Al-Akhdar in Libya. Inter J Pharmacognosy Phytochem Res. 2016;8(7)
  • Ezzat SMS, El-Hawary S, El Shabrawy AER, Aa El-Shibani F. Evaluation of the phenolic and flavonoid contents, antimicrobial and cytotoxic activities of some plants growing in Al Jabal Al-Akhdar in Libya. Published online 2016.
  • Buzgaia N, Awin T, Elabbar F, Abdusalam K, Lee SY, Rukayadi Y, Abas F, Shaari K. Antibacterial activity of Arbutus pavarii pamp against methicillin-resistant Staphylococcus aureus (MRSA) and UHPLC-MS/MS profile of the bioactive fraction. Plants. 2020;9(11):1539.
  • Mohammed HA, Khan RA. Anthocyanins: Traditional Uses, Structural and Functional Variations, Approaches to Increase Yields and Products’ Quality, Hepatoprotection, Liver Longevity, and Commercial Products. Int J Mol Sci. 2022;23(4):2149.
  • Mohammed SAA, Eldeeb HM, Mohammed HA, Al-Omar MS, Almahmoud SA, El-Readi MZ, Ragab EA, Sulaiman GM, Aly MSA, Khan RA, et al. Roles of Suaeda vermiculata Aqueous-Ethanolic Extract, Its Subsequent Fractions, and the Isolated Compounds in Hepatoprotection against Paracetamol-Induced Toxicity as Compared to Silymarin. Oxid Med Cell Longev. 2021;2021:6174897–10.
  • Shaik AA, Elumalai AA, Eswaraiah MC, Swathi S. An updated review on hepatoprotective medicinal plants. J Drug Delivery Ther. 2012;2(2)
  • Elumalai P, Lakshmi S. Role of quercetin benefits in neurodegeneration. In: The benefits of natural products for neurodegenerative diseases. Springer; 2016. p. 229–245.
  • Ay M, Charli A, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Quercetin In: Nutraceuticals. Netherlands: Elsevier; 2021. p. 749–755.
  • Ganeshpurkar A, Saluja A. The pharmacological potential of catechin. IJBB. 2020;57(5):505–511.
  • Cos P, Bruyne TD, Hermans N, Apers S, Berghe DV, Vlietinck AJ. Proanthocyanidins in health care: current and new trends. Curr Med Chem. 2004;11(10):1345–1359.
  • Hegazy AK, Al-Rowaily SL, Faisal M, Alatar AA, El-Bana MI, Assaeed AM. Nutritive value and antioxidant activity of some edible wild fruits in the Middle East. J Med Plants Res. 2013;7(15):938–946.
  • Adewusi EA, Afolayan AJ. A review of natural products with hepatoprotective activity. J Med Plants Res. 2010;4(13):14787–14804.
  • Mohammed HA. The Valuable Impacts of Halophytic Genus Suaeda; Nutritional, Chemical, and Biological Values. Med Chem. 2020;16(8):1044–1057.
  • Conde de la Rosa L, Goicoechea L, Torres S, Garcia-Ruiz C, Fernandez-Checa JC. Role of Oxidative Stress in Liver Disorders. Livers. 2022;2(4):283–314.
  • Sekiyama KD, Yoshiba M, Thomson AW. Circulating proinflammatory cytokines (IL‐1β, TNF‐α, and IL‐6) and IL‐1 receptor antagonist (IL‐1Ra) in fulminant hepatic failure and acute hepatitis. Clin Exp Immunol. 1994;98(1):71–77.
  • Mohammed HA, Qureshi KA, Ali HM, Al-Omar MS, Khan O, Mohammed SAA. Bio-Evaluation of the Wound Healing Activity of Artemisia judaica L. as Part of the Plant’s Use in Traditional Medicine$\mathsemicolon$ Phytochemical, Antioxidant, Anti-Inflammatory, and Antibiofilm Properties of the Plant’s Essential Oils. Antioxidants. 2022;11(2):332.
  • El-Assal O, Hong F, Kim WH, Radaeva S, Gao B. IL-6-deficient mice are susceptible to ethanol-induced hepatic steatosis: IL-6 protects against ethanol-induced oxidative stress and mitochondrial permeability transition in the liver. Cell Mol Immunol. 2004;1(3):205–211.
  • Nithiyanandam S, Prince SE. Caesalpinia bonducella Counteracts Paracetamol-Instigated Hepatic Toxicity via Modulating TNF-α and IL-6/10 Expression and Bcl-2 and Caspase-8/3 Signalling. Appl Biochem Biotechnol. 2023;195(10):6256–6275. Published online
  • Fathy M, Khalifa EMMA, Fawzy MA. Modulation of inducible nitric oxide synthase pathway by eugenol and telmisartan in carbon tetrachloride-induced liver injury in rats. Life Sci. 2019;216:207–214.
  • Tilg H, Kaser A, Moschen AR. How to modulate inflammatory cytokines in liver diseases. Liver Int. 2006;26(9):1029–1039.
  • Jiang W-P, Deng J-S, Huang S-S, Wu S-H, Chen C-C, Liao J-C, Chen H-Y, Lin H-Y, Huang G-J. Sanghuangporus sanghuang Mycelium Prevents Paracetamol-Induced Hepatotoxicity through Regulating the MAPK/NF-κB, Keap1/Nrf2/HO-1, TLR4/PI3K/Akt, and CaMKKβ/LKB1/AMPK Pathways and Suppressing Oxidative Stress and Inflammation. Antioxidants (Basel). 2021;10(6):897. 2021, Vol 10, Page 897.
  • Tenuta MC, Deguin B, Loizzo MR, Dugay A, Acquaviva R, Malfa GA, Bonesi M, Bouzidi C, Tundis R. Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric Oxide (NO) Inhibitory Activities of Arbutus unedo L. Antioxidants (Basel). 2020;9(2):184. 2020, Vol 9, Page 184.
  • Banerjee A, Mukherjee S, Maji BK. Efficacy of Coccinia grandis against monosodium glutamate induced hepato-cardiac anomalies by inhibiting NF-kB and caspase 3 mediated signalling in rat model. Hum Exp Toxicol. 2021;40(11):1825–1851.
  • Afolabi OA, Anyogu DC, Hamed MA, Odetayo AF, Adeyemi DH, Akhigbe RE. Glutamine prevents upregulation of NF-kB signaling and caspase 3 activation in ischaemia/reperfusion-induced testicular damage: An animal model. Biomed Pharmacother. 2022;150:113056.
  • de Souza Basso B, Haute GV, Ortega-Ribera M, Luft C, Antunes GL, Bastos MS, Carlessi LP, Levorse VG, Cassel E, Donadio MVF, et al. Methoxyeugenol deactivates hepatic stellate cells and attenuates liver fibrosis and inflammation through a PPAR–and NF-kB mechanism. J Ethnopharmacol. 2021;280:114433. Published online
  • Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331.
  • Pauff JM, Cao H, Hille R. Substrate Orientation and Catalysis at the Molybdenum Site in Xanthine Oxidase: CRYSTAL STRUCTURES IN COMPLEX WITH XANTHINE AND LUMAZINE. J Biol Chem. 2009;284(13):8760–8767.
  • Harman CA, Turman MV, Kozak KR, Marnett LJ, Smith WL, Garavito RM. Structural basis of enantioselective inhibition of cyclooxygenase-1 by S-alpha-substituted indomethacin ethanolamides. J Biol Chem. 2007;282(38):28096–28105.
  • Gilbert NC, Gerstmeier J, Schexnaydre EE, Börner F, Garscha U, Neau DB, Werz O, Newcomer ME. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat Chem Biol. 2020;16(7):783–790.
  • Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell. 2000;6(4):909–919.