1,092
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Isolation, structure modification, and anti-rheumatoid arthritis activity of isopimarane-type diterpenoids from Orthosiphon aristatus

, , , , , , , , , & show all
Article: 2296355 | Received 04 Sep 2023, Accepted 13 Dec 2023, Published online: 17 Jan 2024

References

  • Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review. JAMA. 2018;320(13):1360–1372.
  • Chen Z, Bozec A, Ramming A, Schett G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol. 2019;15(1):9–17.
  • An Q, Yan W, Zhao Y, Yu K. Enhanced neutrophil autophagy and increased concentrations of IL-6, IL-8, IL-10 and MCP-1 in rheumatoid arthritis. Int Immunopharmacol. 2018;65:119–128.
  • Robert M, Hot A, Mifsud F, Ndongo-Thiam N, Miossec P. Synergistic interaction between high bioactive IL-17A and joint destruction for the occurrence of cardiovascular events in rheumatoid arthritis. Front Immunol. 2020;11:1998.
  • Liu S, Ma H, Zhang H, Deng C, Xin P. Recent advances on signaling pathways and their inhibitors in rheumatoid arthritis. Clin Immunol. 2021;230:108793.
  • Noort AR, Tak PP, Tas SW. Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? Arthritis Res Ther. 2015;17(1):15.
  • Jimi E, Fei H, Nakatomi C. NF-κB signaling regulates physiological and pathological chondrogenesis. Int J Mol Sci. 2019;20(24):6275.
  • Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–489.
  • Yin H, Liu N, Sigdel KR, Duan L. Role of NLRP3 inflammasome in rheumatoid arthritis. Front Immunol. 2022;13:931690.
  • Yam MF, Asmawi MZ, Basir R. An investigation of the anti-inflammatory and analgesic effects of Orthosiphon stamineus leaf extract. J Med Food. 2008;11(2):362–368.
  • Jia MR, Li XW. Chinese Ethnic Materia Medica. Y.X. Zhao (Ed.). 1st ed. Beijing, China: China Medical Science and Technology Press, 2005; p. 166–167.
  • Malterud KE, Hanche-Olsen IM, Smith-Kielland I. Flavonoids from Orthosiphon spicatus. Planta Med. 1989;55(6):569–570.
  • Sumaryono W, Proksch P, Wray V, Witte L, Hartmann T. Qualitative and quantitative analysis of the phenolic constituents from Orthosiphon aristatus. Planta Med. 1991;57(2):176–180.
  • Ma GX, Zhang XP, Li PF, Sun ZH, Zhu NL, Zhu YD, Yang JS, Chen DL, Wu HF, Xu XD. Four new phenolic acid with unusual bicycle [2.2.2] octane moiety from Clerodendranthus spicatus and their anti-inflammatory activity. Fitoterapia. 2015;105:61–65.
  • Awale S, Tezuka Y, Banskota AH, Kadota S. Inhibition of NO production by highly-oxygenated diterpenes of Orthosiphon stamineus and their structure-activity relationship. Biol Pharm Bull. 2003;26(4):468–473.
  • Nguyen MT, Awale S, Tezuka Y, Chien-Hsiung C, Kadota S. Staminane- and isopimarane-type diterpenes from Orthosiphon stamineus of Taiwan and their nitric oxide inhibitory activity. J Nat Prod. 2004;67(4):654–658.
  • Di XX, Wang SQ, Zhang XL, Wang B, Lou HX, Wang XN. Diterpenoids from the aerial parts of Orthosiphon aristatus var. aristatus. Phytochem Lett. 2013;6(3):412–417.
  • Chen YL, Tan JJ, Lu LL, Tan CH, Jiang SH, Zhu DY. Water-soluble constituents of Clerodendranthus spicatus. Chin Tradit Herbal Drugs. 2009;40(5):689–693.
  • Awale S, Tezuka Y, Kobayashi M, Ueda JY, Kadota S. Neoorthosiphonone A; a nitric oxide (NO) inhibitory diterpene with new carbon skeleton from Orthosiphon stamineus. Tetrahedron Lett. 2004;45(7):1359–1362.
  • Nguyen PH, Tuan HN, Hoang DT, Vu QT, Pham MQ, Tran MH, To DC. Glucose uptake stimulatory and PTP1B inhibitory activities of pimarane diterpenes from Orthosiphon stamineus Benth. Biomolecules. 2019;9(12):859–869.
  • Maheswari C, Sajna V, Venkatnarayanan R. In silico docking analysis of the compounds of Orthosiphon stamineus for the anticancer activity. Int Res J Pharm. 2016;7(4):17–23.
  • Yoshimura H, Sugawara K, Saito M, Saito S, Murakami S, Miyata N, Kawashima A, Morimoto S, Gao N, Zhang X, et al. In vitro TGF-beta1 antagonistic activity of ursolic and oleanolic acids isolated from Clerodendranthus spicatus. Planta Med. 2003;69(7):673–675.
  • Chen WD, Zhao YL, Sun WJ, He YJ, Liu YP, Jin Q, Yang XW, Luo XD. Kidney tea” and its bioactive secondary metabolites for treatment of gout. J Agric Food Chem. 2020;68(34):9131–9138.
  • Awale S, Tezuka Y, Banskota AH, Adnyana IK, Kadota S. Highly-oxygenated isopimarane-type diterpenes from Orthosiphon stamineus of Indonesia and their nitric oxide inhibitory activity. Chem Pharm Bull (Tokyo)). 2003;51(3):268–275.
  • Masuda T, Masuda K, Shiragami S, Jitoe A, Nakatani N. Orthosiphol A and B, novel diterpenoid inhibitors of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation, from Orthosiphon stamineus. Tetrahedron. 1992;48(33):6787–6792.
  • Awale S, Tezuka Y, Banskota AH, Kouda K, Tun KM, Kadota S. Five novel highly oxygenated diterpenes of Orthosiphon stamineus from Myanmar. J Nat Prod. 2001;64(5):592–596.
  • Kazuyoshi O, Takako B, Toshiyuki M, Hirotaka S. Indonesian medicinal plants. XXIII.1) Chemical structures of two new migrated pimarane-type diterpenes, neoorthsiphols A and B, and suppressive effects on rat thoracic aorta of chemical constituents isolated from the leaves of Orthosiphon aristatus (Lamiaceae). Chem Pharm Bull. 2000;48(3):433–435.