1,098
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design, synthesis, and bioevaluation of 1h-pyrrolo[3,2-c]pyridine derivatives as colchicine-binding site inhibitors with potent anticancer activities

, , , , , , & show all
Article: 2302320 | Received 19 Sep 2023, Accepted 29 Dec 2023, Published online: 14 Jan 2024

References

  • Steinmetz MO, Prota AE. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol. 2018;28(10):776–792.
  • Li Y, Yang GX, Zhang JF, Tang P, Yang CC, Wang G, Chen JC, Liu J, Zhang L, Ouyang L. Discovery, synthesis, and evaluation of highly selective vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor for the potential treatment of metastatic triple-negative breast cancer. J Med Chem. 2021;64(16):12022–12048.
  • Banerjee S, Arnst KE, Wang Y, Kumar G, Deng S, Yang L, Li GB, Yang J, White SW, Li W, et al. Heterocyclic-fused pyrimidines as novel tubulin polymerization inhibitors targeting the colchicine binding site: structural basis and antitumor efficacy. J Med Chem. 2018;61(4):1704–1718.
  • Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov. 2010;9(10):790–803.
  • Karahalil B, Yardım-Akaydin S, Nacak Baytas S. An overview of microtubule targeting agents for cancer therapy. Arh Hig Rada Toksikol. 2019;70(3):160–172.
  • Yang CPH, Horwitz SB. Taxol(®): the first microtubule stabilizing agent. Int J Mol Sci. 2017;18(8):1733.
  • Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer. 2010;10(3):194–204.
  • Tan L, Wu C, Zhang J, Yu Q, Wang X, Zhang L, Ge M, Wang Z, Ouyang L, Wang Y. Design, synthesis, and biological evaluation of heterocyclic-fused pyrimidine chemotypes guided by X-ray crystal structure with potential antitumor and anti-multidrug resistance efficacy targeting the colchicine binding site. J Med Chem. 2023;66(5):3588–3620.
  • Ravelli RBG, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004;428(6979):198–202.
  • Matthew S, Chen QY, Ratnayake R, Fermaintt CS, Lucena-Agell D, Bonato F, Prota AE, Lim ST, Wang X, Díaz JF, et al. Gatorbulin-1, a distinct cyclodepsipeptide chemotype, targets a seventh tubulin pharmacological site. Proc Natl Acad Sci U. S. A. 2021;118:e2021847118.
  • Prota AE, Bargsten K, Northcote PT, Marsh M, Altmann KH, Miller JH, Díaz JF, Steinmetz MO. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew Chem Int Ed Engl. 2014;53(6):1621–1625.
  • Prota AE, Bargsten K, Diaz JF, Marsh M, Cuevas C, Liniger M, Neuhaus C, Andreu JM, Altmann KH, Steinmetz MO. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc Natl Acad Sci U S A. 2014;111(38):13817–13821.
  • Yang J, Wang Y, Wang T, Jiang J, Botting CH, Liu H, Chen Q, Yang J, Naismith JH, Zhu X, et al. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat Commun. 2016;7(1):12103–12103.
  • Nogales E, Wolf SG, Downing KH. Structure of the αβ tubulin dimer by electron crystallography. Nature. 1998;391(6663):199–203.
  • Cormier A, Marchand M, Ravelli RBG, Knossow M, Gigant B. Structural insight into the inhibition of tubulin by vinca domain peptide ligands. EMBO Rep. 2008;9(11):1101–1106.
  • Porcù E, Bortolozzi R, Basso G, Viola G. Recent advances in vascular disrupting agents in cancer therapy. Future Med Chem. 2014;6:1485–1498.
  • Jiménez C, Ellahioui Y, Álvarez R, Aramburu L, Riesco A, González M, Vicente A, Dahdouh A, Ibn Mansour A, Jiménez C, et al. Exploring the size adaptability of the B ring binding zone of the colchicine site of tubulin with para-nitrogen substituted isocombretastatins. Eur J Med Chem. 2015;100:210–222.,
  • Wang J, Miller DD, Li W. Molecular interactions at the colchicine binding site in tubulin: an X-ray crystallography perspective. Drug Discov Today. 2022;27(3):759–776.
  • Zhang Y, Li B, Yan R, Xia L, Fan A, Chu Y, Wang L, Wang Z, Jiang A, Zhu H. A class of novel tubulin polymerization inhibitors exert effective antitumor activity via mitotic catastrophe. Eur J Med Chem. 2019;163:896–910.
  • Bai Z, Gao M, Zhang H, Guan Q, Xu J, Li Y, Qi H, Li Z, Zuo D, Zhang W, et al. BZML, a novel colchicine binding site inhibitor, overcomes multidrug resistance in A549/Paclitaxel cells by inhibiting P-gp function and inducing mitotic catastrophe. Cancer Lett. 2017;402:81–92.
  • Pettit GR, Singh SB, Hamel E, Lin CM, Alberts DS, Garcia-Kendal D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia. 1989;45(2):209–211.
  • Kaffy J, Pontikis R, Florent JC, Monneret C. Synthesis and biological evaluation of vinylogous combretastatin A-4 derivatives. Org Biomol Chem. 2005;3(14):2657–2660.
  • Lawrence NJ, Rennison D, Woo M, McGown AT, Hadfield JA. Antimitotic and cell growth inhibitory properties of combretastatin A-4-like ethers. Bioorg Med Chem Lett. 2001;11(1):51–54.
  • Hamze A, Alami M, Provot O. Developments of isoCombretastatin A-4 derivatives as highly cytotoxic agents. Eur J Med Chem. 2020;190:112110.
  • Yang F, Jian XE, Diao PC, Huo XS, You WW, Zhao PL. Synthesis, and biological evaluation of 3,6-diaryl-[1,2,4]triazolo[4,3-a]pyridine analogues as new potent tubulin polymerization inhibitors. Eur J Med Chem. 2020;204:112625.
  • Li L, Quan D, Chen J, Ding J, Zhao J, Lv L, Chen J. Design, synthesis, and biological evaluation of 1-substituted-2-aryl imidazoles targeting tubulin polymerization as potential anticancer agents. Eur J Med Chem. 2019;184:111732.
  • Madadi NR, Penthala NR, Howk K, Ketkar A, Eoff RL, Borrelli MJ, Crooks PA. Synthesis and biological evaluation of novel 4,5-disubstituted 2H-1,2,3-triazoles as cis-constrained analogues of combretastatin A-4. Eur J Med Chem. 2015;103:123–132.
  • Romagnoli R, Oliva P, Salvador MK, Manfredini S, Padroni C, Brancale A, Ferla S, Hamel E, Ronca R, Maccarinelli F, et al. A facile synthesis of diaryl pyrroles led to the discovery of potent colchicine site antimitotic agents. Eur J Med Chem. 2021;214:113229.
  • Zhou P, Chen G, Gao M, Wu J. Design, synthesis and evaluation of the osimertinib analogue (C-005) as potent EGFR inhibitor against NSCLC. Bioorg Med Chem. 2018;26(23–24):6135–6145.
  • El-Gamal MI, Oh CH. Pyrrolo[3,2-c]pyridine derivatives with potential inhibitory effect against FMS kinase: in vitro biological studies. J Enzyme Inhib Med Chem. 2018;33(1):1160–1166.
  • El-Gamal MI, Jung MH, Lee WS, Sim T, Yoo KH, Oh CH. Design, synthesis, and antiproliferative activity of new 1H-pyrrolo[3,2-c]pyridine derivatives against melanoma cell lines. Eur J Med Chem. 2011;46(8):3218–3226.
  • McCoull W, Bailey A, Barton P, Birch AM, Brown AJ, Butler HS, Boyd S, Butlin RJ, Chappell B, Clarkson P, et al. Indazole-6-phenylcyclopropylcarboxylic acids as selective GPR120 agonists with in vivo efficacy. J Med Chem. 2017;60(7):3187–3197.
  • Liu R, Huang M, Zhang S, Li L, Li M, Sun J, Wu L, Guan Q, Zhang W. Design, synthesis and bioevaluation of 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d]imidazoles as tubulin polymerization inhibitors. Eur J Med Chem. 2021;226:113826.
  • Liu R, Zhang S, Huang M, Guo Z, Li L, Li M, Wu L, Guan Q, Zhang W. Design, synthesis and bioevaluation of 2,7-diaryl-pyrazolo[1,5-a]pyrimidines as tubulin polymerization inhibitors. Bioorg Chem. 2021;115:105220.
  • Wang C, Zhang Y, Yang S, Shi L, Xiu Y, Wu Y, Jiang H. 3-aryl-4-(3,4,5-trimethoxyphenyl)pyridines inhibit tubulin polymerisation and act as anticancer agents. J Enzyme Inhib Med Chem. 2024;39(1):2286939.
  • Wang C, Zhang Y, Yang S, Xiu Y, Chen W, Wang Y, Xing D. Design, synthesis, and biological evaluation of 4-aryl-9H-carbazoles as tubulin polymerization inhibitors with potent anticancer activities. Arab J Chem. 2023;16(10):105146.
  • Deng B, Sun Z, Wang Y, Mai R, Yang Z, Ren Y, Liu J, Huang J, Ma Z, Chen T, et al. Design, synthesis, and bioevaluation of imidazo [1,2-a] pyrazine derivatives as tubulin polymerization inhibitors with potent anticancer activities. Bioorg Med Chem. 2022;76:117098.