2,432
Views
3
CrossRef citations to date
0
Altmetric
Review

Understanding the mechanisms for COVID-19 vaccine’s protection against infection and severe disease

, &
Pages 186-192 | Received 12 Nov 2022, Accepted 24 Jan 2023, Published online: 06 Feb 2023

References

  • WHO. WHO Coronavirus (COVID-19) Dashboard. 2022. [cited 2022 Sep 13]. Available from: https://covid19.who.int/
  • WHO. This dashboard summarizes Officially reported COVID-19 vaccination data. 2022. [cited 2022 Nov 8]. Available from: https://app.powerbi.com/view?r=eyJrIjoiMWNjNzZkNjctZTNiNy00YmMzLTkxZjQtNmJiZDM2MTYxNzEwIiwidCI6ImY2MTBjMGI3LWJkMjQtNGIzOS04MTBiLTNkYzI4MGFmYjU5MCIsImMiOjh9
  • Watson OJ, Barnsley G, Toor J, et al. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect Dis. 2022 Sep;22(9):1293–1302.
  • Fiolet T, Kherabi Y, MacDonald CJ, et al. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022 Feb;28(2):202–221.
  • Ranzani OT, Hitchings MDT, de Melo RL, et al. Effectiveness of an inactivated Covid-19 vaccine with homologous and heterologous boosters against omicron in Brazil. Nat Commun. 2022 Oct 6;13(1):5536.
  • Andrews N, Stowe J, Kirsebom F, et al. Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med. 2022 Apr 21;386(16):1532–1546.
  • Merad M, Blish CA, Sallusto F, et al. The immunology and immunopathology of COVID-19. Science. 2022 Mar 11;375(6585):1122–1127.
  • Lund FE, Randall TD. Scent of a vaccine. Science. 2021 Jul 23;373(6553):397–399.
  • Yoshida M, Claypool SM, Wagner JS, et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity. 2004 Jun;20(6):769–783.
  • Li Z, Palaniyandi S, Zeng R, et al. Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4388–4393.
  • Mades A, Chellamathu P, Kojima N, et al. Detection of persistent SARS-CoV-2 IgG antibodies in oral mucosal fluid and upper respiratory tract specimens following COVID-19 mRNA vaccination. Sci Rep. 2021 Dec 27;11(1):24448.
  • Reynolds HY. Immunoglobulin G and its function in the human respiratory tract. Mayo Clin Proc. 1988 Feb;63(2):161–174.
  • Vennema H, de Groot RJ, Harbour DA, et al. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J Virol. 1990 Mar;64(3):1407–1409.
  • Prince GA, Hemming VG, Horswood RL, et al. Effectiveness of topically administered neutralizing antibodies in experimental immunotherapy of respiratory syncytial virus infection in cotton rats. J Virol. 1987 Jun;61(6):1851–1854.
  • Bansal K, Kumar S. Mutational cascade of SARS-CoV-2 leading to evolution and emergence of omicron variant. Virus Res. 2022 Jul 2;315:198765.
  • Garcia-Beltran WF, St Denis KJ, Hoelzemer A, et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell. 2022 Feb 3;185(3):457–466 e4.
  • Peacock T. The SARS-CoV-2 variant, Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the endosomal route of entry. 2022. [cited 2021 Dec 31]. Available from: https://www.biorxiv.org/content/10.1101/2021/12/31/474653v1
  • McMahan K, Giffin V, Tostanoski LH, et al. Reduced pathogenicity of the SARS-CoV-2 Omicron variant in hamsters. 2022. [cited 2022 Jan 2]. Available from: https://doi.org/10.1016/j.medj.2022.03.004
  • Petersen E, Koopmans M, Go U, et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis. 2020 Sep;20(9):e238–e244.
  • Liu Y, Rocklov J. The effective reproductive number of the Omicron variant of SARS-CoV-2 is several times relative to Delta. J Travel Med. 2022 May;29(3):taac037.
  • Iijima N, Iwasaki A. Tissue instruction for migration and retention of TRM cells. Trends Immunol. 2015 Sep;36(9):556–564.
  • Minne A, Louahed J, Mehauden S, et al. The delivery site of a monovalent influenza vaccine within the respiratory tract impacts on the immune response. Immunology. 2007 Nov;122(3):316–325.
  • Rosenberg ES, Holtgrave DR, Dorabawila V, et al. New COVID-19 cases and hospitalizations among adults, by vaccination status - New York, May 3-July 25, 2021. MMWR Morb Mortal Wkly Rep. 2021 Aug 27;70(34):1150–1155.
  • Feikin DR, Higdon MM, Abu-Raddad LJ, et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet. 2022 Mar 5;399(10328):924–944.
  • Hodgson SH, Mansatta K, Mallett G, et al. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect Dis. 2021 Feb;21(2):e26–e35.
  • Qin Z, Liu F, Blair R, et al. Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics. 2021;11(16):8076–8091.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497–506.
  • Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar 28;395(10229):1033–1034.
  • Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 May;46(5):846–848.
  • Hewitt RJ, Lloyd CM. Regulation of immune responses by the airway epithelial cell landscape. Nat Rev Immunol. 2021 Jun;21(6):347–362.
  • Hsia CC, Hyde DM, Weibel ER. Lung structure and the intrinsic challenges of gas exchange. Compr Physiol. 2016 Mar 15;6(2):827–895.
  • Bosmuller H, Matter M, Fend F, et al. The pulmonary pathology of COVID-19. Virchows Arch. 2021 Jan;478(1):137–150.
  • Skok K, Stelzl E, Trauner M, et al. Post-mortem viral dynamics and tropism in COVID-19 patients in correlation with organ damage. Virchows Arch. 2021 Feb;478(2):343–353.
  • Wang K, Jia Z, Bao L, et al. Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. Nature. 2022 Mar;603(7903):919–925.
  • Xiaoqin Guo ZG, Duan C, Chen Z, et al. Long-term persistence of IgG antibodies in SARS-CoV infected healthcare workers. 2020. [cited 2020 Feb 12]. Available from: https://www.medrxiv.org/content/10.1101/2020.02.12.20021386v1
  • Tarke A, Coelho CH, Zhang Z, et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell. 2022 Mar 3;185(5):847–859 e11.
  • Ferretti AP, Kula T, Wang Y, et al. Unbiased screens show CD8(+) T cells of COVID-19 patients recognize shared Epitopes in SARS-CoV-2 that largely reside outside the spike protein. Immunity. 2020 Nov 17;53(5):1095–1107 e3.
  • Hogan CA, Stevens BA, Sahoo MK, et al. High frequency of SARS-CoV-2 RNAemia and association with severe disease. Clin Infect Dis. 2021 May 4;72(9):e291–e295.
  • Li Y, Schneider AM, Mehta A, et al. SARS-CoV-2 viremia is associated with distinct proteomic pathways and predicts COVID-19 outcomes. J Clin Invest. 2021 March 2;131(13):e148635.
  • Filbin MR, Mehta A, Schneider AM, et al. Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Rep Med. 2021 May 18;2(5):100287.
  • Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 2020 Dec;41(12):1100–1115.
  • Bohn MK, Hall A, Sepiashvili L, et al. Pathophysiology of COVID-19: mechanisms underlying disease severity and progression. Physiology (Bethesda). 2020 Sep 1;35(5):288–301.
  • Racaniello VR. One hundred years of poliovirus pathogenesis. Virology. 2006 Jan 5;344(1):9–16.
  • Allen IV, McQuaid S, Penalva R, et al. Macrophages and dendritic cells are the predominant cells infected in measles in humans. mSphere. 2018 May 9;3(3):e00570–17.
  • Papp K. Experiments proving that the route of infection in measles is the contamination of the conjunctival mucosa. Rev Immunol Ther Antimicrob. 1956 Jan-Mar;20(1–2):27–36.
  • Ohfuji S, Ito K, Ishibashi M, et al. Immunogenicity study to investigate the interchangeability among three different types of polio vaccine: a cohort study in Japan. Medicine (Baltimore). 2017 Jun;96(23):e7073.
  • Li RC, Li CG, Wang HB, et al. Immunogenicity of two different sequential schedules of inactivated polio vaccine followed by oral polio vaccine versus oral polio vaccine alone in healthy infants in China. J Pediatric Infect Dis Soc. 2016 Sep;5(3):287–296.
  • New CE.Omicron-specific vaccines offer similar protection to existing boosters. Nature. 2022 Sep 1;609(7926):232–233.
  • Khoury DS. SSD, Kanta S, Stephen JK, et al. Predicting the efficacy of variant-modified COVID-19 vaccine boosters. medRxiv. 2022. [cited 2022 Aug 26]. Available from: https://www.medrxiv.org/content/10.1101/2022.08.25.22279237v1
  • Renegar KB, Small PA, Jr., Boykins LG, et al. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J Immunol. 2004 Aug 1;173(3):1978–1986.
  • Chan RWY, Liu S, Cheung JY, et al. The mucosal and serological immune responses to the novel coronavirus (SARS-CoV-2) vaccines. Front Immunol. 2021;12:744887.
  • Tang J, Zeng C, Cox TM, et al. Respiratory mucosal immunity against SARS-CoV-2 following mRNA vaccination. Sci Immunol. 2022 Oct 28;7(76):eadd4853.
  • Xu H, Cai L, Hufnagel S, et al. Intranasal vaccine: factors to consider in research and development. Int J Pharm. 2021 Nov;20(609):121180.
  • Chavda VP, Vora LK, Pandya AK, et al. Intranasal vaccines for SARS-CoV-2: from challenges to potential in COVID-19 management. Drug Discov Today. 2021 Nov;26(11):2619–2636.