1,685
Views
1
CrossRef citations to date
0
Altmetric
Review

Nano-vaccines for gene delivery against HIV-1 infection

, , &
Pages 315-326 | Received 23 Dec 2022, Accepted 16 Mar 2023, Published online: 29 Mar 2023

References

  • Rodriguez-Izquierdo I, Sepulveda-Crespo D, Maria Lasso J, et al. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 May;14(3).
  • Ndhlovu ZM, Kamya P, Mewalal N, et al. Magnitude and kinetics of CD8(+) T cell activation during hyperacute HIV infection impact viral set point. Immunity. 2015 Sep 15;43(3):591–604.
  • Kim PS, Read SW. Nanotechnology and HIV: potential applications for treatment and prevention. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010 November-December 2(6):693–702.
  • Schmitz JE, Kuroda MJ, Santra S, et al. Control of viremia in simian immunodeficiency virus infection by CD8(+) lymphocytes. Science. 1999 Feb 5;283(5403):857–860.
  • Ding H, George S, Leng XI, et al. Silk fibers assisted long-term 3D culture of human primary urinary stem cells via inhibition of senescence-associated genes: potential use in the assessment of chronic mitochondrial toxicity. Mater Today Adv. 2022 Aug;15. DOI:10.1016/j.mtadv.2022.100261
  • Goonetilleke N, Liu MKP, Salazar-Gonzalez JF, et al. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J Exp Med. 2009 Jun 8;206(6):1253–1272.
  • Gulick RM, Flexner C. Long-acting HIV drugs for treatment and prevention. In: Klotman ME, editor. Annual Review of Medicine. 2019;70:137–150.
  • Janes HE, Cohen KW, Frahm N, et al. Higher T-cell responses induced by DNA/rAd5 HIV-1 preventive vaccine are associated with lower HIV-1 infection risk in an efficacy trial. J Infect Dis. 2017 May 1;215(9):1376–1385.
  • Moore CB, John M, James IR, et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science. 2002 May 24;296(5572):1439–1443.
  • Jones LD, Moody MA, Thompson AB. Innovations in HIV-1 vaccine design. Clin Ther. 2020 Mar;42(3):499–514.
  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 2009 Dec 3;361(23):2209–2220.
  • Burton DR, Hangartner L, Broadly neutralizing antibodies to HIV and their role in vaccine design. In: Littman DR, Yokoyama WM, editors. Annual Review of Immunology, Vol 34. Annual Review of Immunology. 2016;342016:635–659.
  • Klatt NR, Shudo E, Ortiz AM, et al. CD8+ Lymphocytes control viral replication in SIVmac239-infected rhesus macaques without decreasing the lifespan of productively infected cells. PLoS Pathog. 2010 Jan;6(1):e1000747.
  • Jin X, Bauer DE, Tuttleton SE, et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques (vol 189, pg 991, 1999). J Exp Med. 1999 Jun 21;189(12):1999.
  • Ogg GS, Jin X, Bonhoeffer S, et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science (New York, NY). 1998 Mar 27;279(5359):2103–2106.
  • Janssen EM, Lemmens EE, Wolfe T, et al. CD4(+) T cells are required for secondary expansion and memory in CD8(+) T lymphocytes. Nature. 2003 Feb 20;421(6925):852–856.
  • Smith CM, Wilson NS, Waithman J, et al. Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol. 2004 Nov;5(11):1143–1148.
  • Sulczewski FB, Liszbinski RB, Romao PRT, et al. Nanoparticle vaccines against viral infections. Arch Virol. 2018 Sep;163(9):2313–2325.
  • Petkar KC, Patil SM, Chavhan SS, et al. An overview of nanocarrier-based adjuvants for vaccine delivery. Pharmaceutics. 2021 Apr;13(4).
  • Zhang J, Russell SJ. Vectors for cancer gene therapy. Cancer Metastasis Rev. 1996 Sep;15(3):385–401.
  • Geng J, Xia X, Teng L, et al. Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing. J Control Release. 2022 Jan;341:166–183.
  • Zaheer T, Pal K, Zaheer I. Topical review on nano-vaccinology: biochemical promises and key challenges. Process Biochem. 2021 Jan;100:237–244.
  • Rezaei T, Khalili S, Baradaran B, et al. Recent advances on HIV DNA vaccines development: stepwise improvements to clinical trials. J Control Release. 2019 Dec;28(316):116–137.
  • Brave A, Ljungberg K, Boberg A, et al. Multigene/multisubtype HIV-1 vaccine induces potent cellular and humoral immune responses by needle-free intradermal delivery. Mol Ther. 2005;Dec;12(6):1197–1205.
  • Hajebi S, Yousefiasl S, Rahimmanesh I, et al. Genetically engineered viral vectors and organic-based non-viral nanocarriers for drug delivery applications. Adv Healthcare Mater. 2022;11(20):2201583.
  • Zhao L, Seth A, Wibowo N, et al. Nanoparticle vaccines. Vaccine. 2014 Jan 9;32(3):327–337.
  • Poon C, Patel AA. Organic and inorganic nanoparticle vaccines for prevention of infectious diseases. Nano Express. 2020 Jun 1;1(1):012001.
  • Turner CT, McInnes SJP, Voelcker NH, et al. Therapeutic potential of inorganic nanoparticles for the delivery of monoclonal antibodies. J Nanomater. 2015;2015;2015(3):721–730.
  • Dizaj SM, Jafari S, Khosroushahi AY. A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res Lett. 2014 May 21;9.
  • Ren X, Geng P, Jiang Q, et al. Synthesis of degradable titanium disulfide nanoplates for photothermal ablation of tumors. Mater Today Adv. 2022 Jun;14
  • Zhang L, Forgham H, Huang X, et al. All-in-one inorganic nanoagents for near-infrared-II photothermal- based cancer theranostics. Mater Today Adv. 2022 Jun;14
  • Duan Y, Wang S, Zhang Q, et al. Nanoparticle approaches against SARS-CoV-2 infection. Current Opinion in Solid State & Mater Sci. 2021 Dec;25(6).
  • Liu Y, Chen C. Role of nanotechnology in HIV/AIDS vaccine development. Adv Drug Deliv Rev. 2016 Aug;1(103):76–89.
  • Xu L, Liu Y, Chen Z, et al. Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett. 2012 Apr;12(4):2003–2012.
  • Qiu Y, Liu Y, Wang L, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods [Article]. Biomaterials. 2010 Oct;31(30):7606–7619.
  • Gupta U, Jain NK. Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv Drug Deliv Rev. 2010 Mar 18;62(4–5):478–490.
  • Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41(6):2256–2282.
  • Li S, Wang B, Jiang S, et al. Surface-functionalized silica-coated calcium phosphate nanoparticles efficiently deliver DNA-based HIV-1 trimeric envelope vaccines against HIV-1. ACS Appl Mater Interfaces. 2021 Nov 17;13(45):53630–53645.
  • He L, de Val N, Morris CD, et al. Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles [Article]. Nat Commun. 2016 Jun;7(1). DOI:10.1038/ncomms12041.
  • Manatunga DC, Godakanda VU, de Silva RM, et al. Recent developments in the use of organic-inorganic nanohybrids for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020 May;12(3).
  • Singha S, Shao K, Ellestad KK, et al. Nanoparticles for immune stimulation against infection, cancer, and autoimmunity. ACS Nano. 2018 Nov;12(11):10621–10635.
  • Bendre A, Bhat MP, Lee K-H, et al. Recent developments in microfluidic technology for synthesis and toxicity-efficiency studies of biomedical nanomaterials. Mater Today Adv. 2022 Mar;13
  • Mahdi EM, Cuadrado-Collados C, Silvestre-Albero J, et al. Polymer nanocomposites functionalised with nanocrystals of zeolitic imidazolate frameworks as ethylene control agents. Mater Today Adv. 2019 Jun;2
  • Poon C, Gallo J, Joo J, et al. Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis. J Nanobiotechnol. 2018 Nov 15;16.
  • Karch CP, Matyas GR. The current and future role of nanovaccines in HIV-1 vaccine development. Expert Rev Vaccines. 2021 Aug 3;20(8):935–944.
  • Date AA, Destache CJ. A review of nanotechnological approaches for the prophylaxis of HIV/AIDS. Biomaterials. 2013 Aug;34(26):6202–6228.
  • Zhu Q, Talton J, Zhang G, et al. Large intestine-targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection. Nat Med. 2012 Aug;18(8):1291–+.
  • Bott C, Rudolph MW, Schneider ARJ, et al. In vivo evaluation of a novel pH- and time-based multiunit colonic drug delivery system. Aliment Pharmacol Ther. 2004 Aug 1;20(3):347–353.
  • Castaldello A, Brocca-Cofano E, Voltan R, et al. DNA prime and protein boost immunization with innovative polymeric cationic core-shell nanoparticles elicits broad immune responses and strongly enhance cellular responses of HIV-1 tat DNA vaccination. Vaccine. 2006 Jul 17;24(29–30):5655–5669.
  • Brinkkemper M, Sliepen K. Nanoparticle vaccines for inducing HIV-1 neutralizing antibodies. Vaccines. 2019 Sep;7(3).
  • Xu L, Liu Y, Chen Z, et al. Morphologically virus-like fullerenol nanoparticles act as the dual-functional nanoadjuvant for HIV-1 vaccine. Adv Mater. 2013 Nov;25(41):5928–5936.
  • Mu Z, Haynes BF, Cain DW. HIV mRNA vaccines-progress and future paths. Vaccines. 2021 Feb;9(2).
  • Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discovery. 2018 Apr;17(4):261–279.
  • Pardi N, LaBranche CC, Ferrari G, et al. Characterization of HIV-1 nucleoside-modified mRNA vaccines in rabbits and rhesus macaques. Mol Ther Nucleic Acids. 2019 Apr 15;15:36–47.
  • Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol. 2021 Apr;21(4):195–197.
  • Wilmschen S, Schmitz JE, Kimpel J. Viral vectors for the induction of broadly neutralizing antibodies against HIV. Vaccines. 2019 Sep;7(3).
  • McCann N, O’Connor D, Lambe T, et al. Viral vector vaccines. Curr Opin Immunol. 2022 Aug;77
  • Travieso T, Li J, Mahesh S, et al. The use of viral vectors in vaccine development. Npj Vaccines. 2022 Jul 4;7(1).
  • Schnell MJ. Viral vectors as potential HIV-1 vaccines. FEMS Microbiol Lett. 2001 Jun 25;200(2):123–129.
  • Parks CL, Picker LJ, King CR. Development of replication-competent viral vectors for HIV vaccine delivery. Curr Opin HIV AIDS. 2013 Sep;8(5):402–411.
  • Kim J, Vasan S, Kim JH, et al. Current approaches to HIV vaccine development: a narrative review. J Int AIDS Soc. 2021 Nov;24(S7). DOI:10.1002/jia2.25793.
  • Appledorn DM, McBride A, Seregin S, et al. Complex interactions with several arms of the complement system dictate innate and humoral immunity to adenoviral vectors [Article]. Gene Ther. 2008 Dec;15(24):1606–1617.
  • Wen Z, Sun C. A zigzag but upward way to develop an HIV-1 vaccine. Vaccines. 2020 Sep;8(3).
  • Letvin NL, Rao SS, Montefiori DC, et al. Immune and genetic correlates of vaccine protection against mucosal infection by SIV in monkeys. Sci Transl Med. 2011 May 4;3(81).
  • Barouch DH, Liu J, Li H, et al. Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys. Nature. 2012 Feb 2;482(7383):89–U115.
  • Baden LR, Walsh SR, Seaman MS, et al. First-in-human evaluation of the safety and immunogenicity of a recombinant adenovirus serotype 26 HIV-1 Env vaccine (IPCAVD 001). J Infect Dis. 2013 Jan 15;207(2):240–247.
  • Barouch DH, Tomaka FL, Wegmann F, et al. Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13-19). Lancet. 2018 Jul 21;392(10143):232–243.
  • Baden LR, Karita E, Mutua G, et al. Assessment of the safety and immunogenicity of 2 novel vaccine platforms for HIV-1 prevention. Ann Intern Med. 2016 Mar 1;164(5):313–+.
  • Buchbinder SP, Mehrotra DV, Duerr A, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet. 2008 November-December;372(9653):1881–1893.
  • Gray GE, Moodie Z, Metch B, et al. Recombinant adenovirus type 5 HIV gag/pol/nef vaccine in South Africa: unblinded, long-term follow-up of the phase 2h HVTN 503/Phambili study. Lancet Infect Dis. 2014 May;14(5):388–396.
  • Huang YD, Follmann D, Nason M, et al. Effect of rAd5-vector HIV-1 preventive vaccines on HIV-1 acquisition: a participant-level meta-analysis of randomized trials. PLoS One. 2015 Sep;10(9). DOI:10.1371/journal.pone.0127735.
  • Sonntag F, Schmidt K, Kleinschmidt JA. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10220–10225.
  • Krause A, Worgall S. Delivery of antigens by viral vectors for vaccination. Ther Deliv. 2011 Jan;2(1):51–70.
  • Earley LF, Conatser LM, Lue VM, et al. Adeno-associated virus serotype-specific inverted terminal repeat sequence role in vector transgene expression. Hum Gene Ther. 2020 Feb 1;31(3–4):151–162.
  • Xin K-Q, Mizukami H, Urabe M, et al. Induction of robust immune responses against human immunodeficiency virus is supported by the inherent tropism of adeno-associated virus type 5 for dendritic cells. J Virol. 2006 Dec;80(24):11899–11910.
  • Penaud-Budloo M, Le Guiner C, Nowrouzi A, et al. Adeno-associated virus vector Genomes persist as episomal chromatin in primate muscle. J Virol. 2008 Aug;82(16):7875–7885.
  • Li S, Qiao Y, Jiang S, et al. Broad and potent bispecific neutralizing antibody gene delivery using adeno-associated viral vectors for passive immunization against HIV-1. J Control Release. 2021 Oct 10;338:633–643.
  • Lin A, Balazs AB. Adeno-associated virus gene delivery of broadly neutralizing antibodies as prevention and therapy against HIV-1. Retrovirology. 2018 Oct 1;15.
  • Priddy FH, Lewis DJM, Gelderblom HC, et al. Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: a phase 1 randomised controlled trial [Article]. Lancet Hiv. 2019 Apr;6(4):E230–E239.
  • Casazza JP, Cale EM, Narpala S, et al. Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial [Article]. Nat Med. 2022 May;28(5):1022–+.
  • Pincha M, Sundarasetty BS, Stripecke R. Lentiviral vectors for immunization: an inflammatory field. Expert Rev Vaccines. 2010 Mar;9(3):309–321.
  • Follenzi A, Santambrogio L, Annoni A. Immune responses to lentiviral vectors. Curr Gene Ther. 2007 Oct;7(5):306–315.
  • Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science (New York, NY). 1996 Apr 12;272(5259):263–267.
  • Gruber A, Kan-Mitchell J, Kuhen KL, et al. Dendritic cells transduced by multiple deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood. 2000 Aug 15;96(4):1327–1333.
  • Buffa V, Negri DRM, Leone P, et al. Evaluation of a self-inactivating lentiviral vector expressing simian immunodeficiency virus Gag for induction of specific immune responses in vitro and in vivo. Viral Immunol. 2006 Sep;19(4):690–701.
  • Buffa V, Negri DRM, Leone P, et al. A single administration of lentiviral vectors expressing either full-length human immunodeficiency virus 1 (HIV-1)(HXB2) Rev/Env or codon-optimized HIV-1(JR-FL) gp120 generates durable immune responses in mice. J Gen Virol. 2006 Jun;87(6):1625–1634.
  • Zarei S, Abraham S, Arrighi JF, et al. Lentiviral transduction of dendritic cells confers protective antiviral immunity in vivo. J Virol. 2004 Jul;78(14):7843–7845.
  • Yamamoto T, Tsunetsugu-Yokota Y. Prospects for the therapeutic application of lentivirus-based gene therapy to HIV-1 infection. Curr Gene Ther. 2008 Feb;8(1):1–8.
  • Morris KV, Rossi JJ. Lentivirus-mediated RNA interference therapy for human immunodeficiency virus type 1 infection. Hum Gene Ther. 2006 May;17(5):479–486.
  • Scherer L, Rossi JJ, Weinberg MS. Progress and prospects: RNA-based therapies for treatment of HIV infection. Gene Ther. 2007 Jul;14(14):1057–1064.
  • Yamamoto T, Miyoshi H, Yamamoto N, et al. Lentivirus vectors expressing short hairpin RNAs against the U3-overlapping region of HIV nef inhibit HIV replication and infectivity in primary macrophages. Blood. 2006 Nov 15;108(10):3305–3312.
  • Toussaint H, Agaugue S, Sarry E, et al. A first-in-human phase I/II trial demonstrates the safety and the immunogenicity of a lentiviral-based therapeutic HIV vaccine eliciting potent polyfunctional multispecific CD8 and CD4 T-cell responses in HIV-infected individuals [Meeting Abstract]. Hum Gene Ther. 2015 Oct 1;26(10):A10–A10.
  • Garcia-Arriaza J, Esteban M. Enhancing poxvirus vectors vaccine immunogenicity. Hum Vaccin Immunother. 2014;10(8):2235–2244.
  • Baden LR, Walsh SR, Seaman MS, et al. First-in-human randomized, controlled trial of mosaic HIV-1 immunogens delivered via a modified vaccinia ankara vector. J Infect Dis. 2018 Aug 15;218(4):633–644.
  • Liu C, Du S, Li C, et al. Immunogenicity analysis following human immunodeficiency virus recombinant DNA and recombinant vaccinia virus Tian Tan prime-boost immunization. Science China-Life Sciences. 2013 Jun 56(6):531–540.
  • Teigler JE, Phogat S, Franchini G, et al. The canarypox virus vector ALVAC induces distinct cytokine responses compared to the vaccinia virus-based vectors MVA and NYVAC in rhesus monkeys. J Virol. 2014 Feb;88(3):1809–1814.
  • Harari A, Bart P-A, Stoehr W, et al. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J Exp Med. 2008 Jan 21;205(1):63–77.
  • Ratto-Kim S, Currier JR, Cox JH, et al. Heterologous prime-boost regimens using rAd35 and rMVA vectors elicit stronger cellular immune responses to HIV proteins than homologous regimens. PLoS One. 2012 Sep 26;7(9):e45840.
  • Perdiguero B, Elena Gomez C, Garcia-Arriaza J, et al. Heterologous combination of VSV-GP and NYVAC vectors expressing HIV-1 trimeric gp145 Env as vaccination strategy to induce balanced B and T cell immune responses. Front Immunol. 2019 Dec 18;10
  • Santra S, Sun Y, Parvani JG, et al. Heterologous Prime/Boost immunization of rhesus monkeys by using diverse poxvirus vectors. J Virol. 2007 Aug;81(16):8563–8570.
  • Pantaleo G, Janes H, Karuna S. Safety and immunogenicity of a multivalent HIV vaccine comprising envelope protein with either DNA or NYVAC vectors (HVTN 096): a phase 1b, double-blind, placebo-controlled trial (vol 6, pg e737, 2019). Lancet Hiv. 2020 Dec;7(12):E803–E803.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010 May;11(5):373–384.
  • Suresh R, Mosser DM. Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv Physiol Educ. 2013 Dec;37(4):284–291.
  • Zhang Y, Guo X, Yan W, et al. ANGPTL8 negatively regulates NF-kappa B activation by facilitating selective autophagic degradation of IKK gamma. Nat Commun. 2017 Dec 18;8
  • Li AV, Moon JJ, Abraham W, et al. Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci Transl Med. 2013 Sep 25;5(204).
  • Du P, Liu R, Sun S, et al. Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced. Nanoscale. 2019 Dec 21;11(47):22748–22761.
  • Li Y, Xiao Y, Chen Y, et al. Nano-based approaches in the development of antiviral agents and vaccines. Life Sci. 2021 Jan 15;265
  • Veneziano R, Moyer TJ, Stone MB, et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat Nanotechnol. 2020 Aug;15(8):716–+.
  • Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010 Nov;10(11):787–796.
  • Agrawal L, Haq W, Hanson CV, et al. Generating neutralizing antibodies, Th1 response and MHC non restricted immunogenicity of HIV-I env and gag peptides in liposomes and ISCOMs with in-built adjuvanticity. J Immune Based Ther Vaccines. 2003 Nov;1(1):5.
  • Ben Haij N, Mzoughi O, Planes R, et al. Cationic nanoglycolipidic particles as vector and adjuvant for the study of the immunogenicity of SIV Nef protein. Int J Pharm. 2012 Feb 14;423(1):116–123.
  • Joffre OP, Segura E, Savina A, et al. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012 Aug;12(8):557–569.
  • Veldhoen S, Laufer SD, Restle T. Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci. 2008 Jul;9(7):1276–1320.
  • Moyo N, Vogel AB, Buus S, et al. Efficient induction of T cells against conserved HIV-1 regions by mosaic vaccines delivered as self-amplifying mRNA. Molecular Therapy-Methods Clin Devel. 2019 Mar 15;12:32–46.
  • Moyo N, Wee EG, Korber B, et al. Tetravalent immunogen assembled from conserved regions of HIV-1 and delivered as mRNA demonstrates potent preclinical T-cell immunogenicity and breadth. Vaccines. 2020 Sep;8(3).
  • Mealey RH, Leib SR, Littke MH, et al. Viral load and clinical disease enhancement associated with a lentivirus cytotoxic T lymphocyte vaccine regimen. Vaccine. 2009 Apr 21;27(18):2453–2468.
  • Shiver JW, Emini EA. Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors. Annu Rev Med. 2004;55(1):355–372.
  • Hofmann-Amtenbrink M, Grainger DW, Hofmann H. Nanoparticles in medicine: current challenges facing inorganic nanoparticle toxicity assessments and standardizations [Article]. Nanomed Nanotechnol Biol Med. 2015 Oct;11(7):1689–1694.
  • Willemsen A, Zwart MP. On the stability of sequences inserted into viral genomes [Review]. Virus Evol. 2019 Jul;5(2). DOI:10.1093/ve/vez045.