2,086
Views
3
CrossRef citations to date
0
Altmetric
Review

Advances in SARS-CoV-2 receptor-binding domain-based COVID-19 vaccines

, &
Pages 422-439 | Received 24 Jan 2023, Accepted 03 May 2023, Published online: 10 May 2023

References

  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi:10.1038/s41586-020-2012-7.
  • World Health Organization coronavirus (COVID-19) dashboard. [Cited Apr. 19, 2023]. Available from: https://covid19.who.int/.
  • Wang N, Shang J, Jiang S, et al. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol. 2020;11:298.
  • Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–452. DOI:10.1038/s41591-020-0820-9
  • Du L, He Y, Zhou Y, et al. The spike protein of SARS-CoV–a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3):226–236. DOI:10.1038/nrmicro2090
  • Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–192.
  • Du L, Yang Y, Zhang X. Neutralizing antibodies for the prevention and treatment of COVID-19. Cell Mol Immunol. 2021;18(10):2293–2306.
  • Du L, Yang Y, Zhang X, et al. Recent advances in nanotechnology-based COVID-19 vaccines and therapeutic antibodies. Nanoscale. 2022;14(4):1054–1074. DOI:10.1039/D1NR03831A
  • Boson B, Legros V, Zhou B, et al. The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. J Biol Chem. 2021;296:100111.
  • Scherer KM, Mascheroni L, Carnell GW, et al. SARS-CoV-2 nucleocapsid protein adheres to replication organelles before viral assembly at the Golgi/ERGIC and lysosome-mediated egress. Sci Adv. 2022;8(1):eabl4895. DOI:10.1126/sciadv.abl4895
  • Shi J, Wang G, Zheng J, et al. Effective vaccination strategy using SARS-CoV-2 spike cocktail against Omicron and other variants of concern. NPJ Vaccines. 2022;7(1):169. DOI:10.1038/s41541-022-00580-z
  • Goodman B. Omicron offshoot XBB.1.5 could drive new COVID-19 surge in US. [Cited Jan. 3, 2023]. Available from: https://www.cnn.com/2023/01/03/health/covid-variant-xbb-explainer/index.html.
  • Centers for Disease Control and Prevention. COVID Data Tracker. [Cited Apr. 22, 2023]. Available from: https://covid.cdc.gov/covid-data-tracker/#variant-proportions.
  • Wang Q, Iketani S, Li Z, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell. 2022;186(2):279–286.e8/. DOI:10.1016/j.cell.2022.12.018
  • Cox M, Peacock TP, Harvey WT, et al. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies. Nat Rev Microbiol. 2022;21(2):112–124. DOI:10.1038/s41579-022-00809-7
  • Aggarwal A, Akerman A, Milogiannakis V, et al. SARS-CoV-2 Omicron BA.5: evolving tropism and evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. EBioMedicine. 2022;84:104270.
  • Shrestha LB, Foster C, Rawlinson W, et al. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: implications for immune escape and transmission. Rev Med Virol. 2022;32(5):e2381. DOI:10.1002/rmv.2381
  • Wilhelm A, Widera M, Grikscheit K, et al. Limited neutralisation of the SARS-CoV-2 Omicron subvariants BA.1 and BA.2 by convalescent and vaccine serum and monoclonal antibodies. EBioMedicine. 2022;82:104158.
  • Schmidt C. A valuable COVID drug doesn’t work against new variants. [Cited Jan. 3, 2023]. Available from: https://www.scientificamerican.com/article/a-valuable-covid-drug-doesnt-work-against-new-variants/.
  • Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCov spike in the prefusion conformation. Science. 2020;367(6483):1260–1263. doi:10.1126/science.abb2507.
  • Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292 e6. doi:10.1016/j.cell.2020.02.058.
  • Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221–224. DOI:10.1038/s41586-020-2179-y
  • Xu C, Wang Y, Liu C, et al. Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by Cryo-EM. Sci Adv. 2021;7(1):eabe5575. DOI:10.1126/sciadv.abe5575
  • Baig AM, Khaleeq A, Syeda H. Elucidation of cellular targets and exploitation of the receptor-binding domain of SARS-CoV-2 for vaccine and monoclonal antibody synthesis. J Med Virol. 2020;92(11):2792–2803.
  • Tai W, He L, Zhang X, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020;17(6):613–620. DOI:10.1038/s41423-020-0400-4
  • Zhang W, Shi K, Geng Q, et al. Structural basis for mouse receptor recognition by SARS-CoV-2 omicron variant. Proc Natl Acad Sci U S A. 2022;119(44):e2206509119. DOI:10.1073/pnas.2206509119
  • Lan J, Chen P, Liu W, et al. Structural insights into the binding of SARS-CoV-2, SARS-CoV, and hCoV-NL63 spike receptor-binding domain to horse ACE2. Structure. 2022;30(10):1432–1442 e4. DOI:10.1016/j.str.2022.07.005
  • Conceicao C, Thakur N, Human S, et al. The SARS-CoV-2 spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol. 2020;18(12):e3001016. DOI:10.1371/journal.pbio.3001016
  • Zhai X, Sun J, Yan Z, et al. Comparison of severe acute respiratory syndrome coronavirus 2 spike protein binding to ACE2 receptors from human, pets, farm animals, and putative intermediate hosts. J Virol. 2020;94(15): e00831-20. doi:10.1128/JVI.00831-20.
  • Jiang S, Zhang X, Du L. Therapeutic antibodies and fusion inhibitors targeting the spike protein of SARS-CoV-2. Expert Opin Ther Targets. 2021;25(6):415–421.
  • Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. 2020;41(5):355–359.
  • Benton DJ, Wrobel AG, Xu P, et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature. 2020;588(7837):327–330. DOI:10.1038/s41586-020-2772-0
  • Jackson CB, Farzan M, Chen B, et al. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3–20. DOI:10.1038/s41580-021-00418-x
  • Cai Y, Zhang J, Xiao T, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020;369(6511):1586–1592. DOI:10.1126/science.abd4251
  • Pang W, Lu Y, Zhao YB, et al. A variant-proof SARS-CoV-2 vaccine targeting HR1 domain in S2 subunit of spike protein. Cell Res. 2022;32(12):1068–1085. DOI:10.1038/s41422-022-00746-3
  • Wang G, Shi J, Verma AK, et al. mRNA vaccines elicit potent neutralization against multiple SARS-CoV-2 omicron subvariants and other variants of concern. iScience. 2022;25(12):105690. DOI:10.1016/j.isci.2022.105690
  • Yang Y, Du L. SARS-CoV-2 spike protein: a key target for eliciting persistent neutralizing antibodies. Signal Transduct Target Ther. 2021;6(1):95.
  • Geng Q, Shi K, Ye G, et al. Structural basis for human receptor recognition by SARS-CoV-2 Omicron variant BA.1. J Virol. 2022;96(8):e0024922. DOI:10.1128/jvi.00249-22
  • Ye G, Liu B, Li F. Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain. Nat Commun. 2022;13(1):1214.
  • Wang D, Mai J, Zhou W, et al. Immunoinformatic analysis of T- and B-cell epitopes for SARS-CoV-2 vaccine design. Vaccines (Basel). 2020;8(3):355. DOI:10.3390/vaccines8030355
  • Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCov. J Med Virol. 2020;92(5):495–500.
  • Hotez PJ, Corry DB, Bottazzi ME. COVID-19 vaccine design: the Janus face of immune enhancement. Nat Rev Immunol. 2020;20(6):347–348.
  • Gattinger P, Niespodziana K, Stiasny K, et al. Neutralization of SARS-CoV-2 requires antibodies against conformational receptor-binding domain epitopes. Allergy. 2022;77(1):230–242. DOI:10.1111/all.15066
  • Piccoli L, Park YJ, Tortorici MA, et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell. 2020;183(4):1024–1042 e21. DOI:10.1016/j.cell.2020.09.037
  • Tai W, Zhang X, Drelich A, et al. A novel receptor-binding domain (RBD)-based mRNA vaccine against SARS-CoV-2. Cell Res. 2020;30(10):932–935. DOI:10.1038/s41422-020-0387-5
  • Jung MK, Shin EC. Phenotypes and functions of SARS-CoV-2-reactive T cells. Mol Cells. 2021;44(6):401–407.
  • Kleanthous H, Silverman JM, Makar KW, et al. Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. NPJ Vaccines. 2021;6(1):128. DOI:10.1038/s41541-021-00393-6
  • Wang Z, Popowski KD, Zhu D, et al. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. Nat Biomed Eng. 2022;6(7):791–805. DOI:10.1038/s41551-022-00902-5
  • Volpatti LR, Wallace RP, Cao S, et al. Polymersomes decorated with the SARS-CoV-2 spike protein receptor-binding domain elicit robust humoral and cellular immunity. ACS Cent Sci. 2021;7(8):1368–1380. DOI:10.1021/acscentsci.1c00596
  • Shanmugaraj B, Khorattanakulchai N, Paungpin W, et al. Immunogenicity and efficacy of recombinant subunit SARS-CoV-2 vaccine candidate in the Syrian hamster model. Biotechnol Rep (Amst). 2023;37:e00779.
  • Shi J, Zheng J, Tai W, et al. A glycosylated RBD protein induces enhanced neutralizing antibodies against Omicron and other variants with improved protection against SARS-CoV-2 infection. J Virol. 2022;96(17):e0011822. DOI:10.1128/jvi.00118-22
  • Avalos I, Lao T, Rodriguez EM, et al. Chimeric antigen by the fusion of SARS-CoV-2 receptor binding domain with the extracellular domain of human CD154: a promising improved vaccine candidate. Vaccines (Basel). 2022;10(6):897. DOI:10.3390/vaccines10060897
  • Shanmugaraj B, Khorattanakulchai N, Panapitakkul C, et al. Preclinical evaluation of a plant-derived SARS-CoV-2 subunit vaccine: protective efficacy, immunogenicity, safety, and toxicity. Vaccine. 2022;40(32):4440–4452. DOI:10.1016/j.vaccine.2022.05.087
  • Dalvie NC, Rodriguez-Aponte SA, Hartwell BL, et al. Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice. Proc Natl Acad Sci U S A. 2021;118(38):e2106845118. DOI:10.1073/pnas.2106845118
  • Geng Q, Tai W, Baxter VK, et al. Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. PLOS Pathog. 2021;17(9):e1009897. DOI:10.1371/journal.ppat.1009897
  • Shrivastava T, Singh B, Rizvi ZA, et al. Comparative immunomodulatory evaluation of the receptor binding domain of the SARS-CoV-2 spike protein; a potential vaccine candidate which imparts potent humoral and Th1 type immune response in a mouse model. Front Immunol. 2021;12:641447.
  • Lin TW, Huang PH, Liao BH, et al. Tag-free SARS-CoV-2 receptor binding domain (RBD), but not C-terminal tagged SARS-CoV-2 RBD, induces a rapid and potent neutralizing antibody response. Vaccines (Basel). 2022;10(11):1839. DOI:10.3390/vaccines10111839
  • Chen WH, Pollet J, Strych U, et al. Yeast-expressed recombinant SARS-CoV-2 receptor binding domain RBD203-N1 as a COVID-19 protein vaccine candidate. Protein Expr Purif. 2022;190:106003.
  • Hou XC, Xu HF, Liu Y, et al. A vaccine with multiple receptor-binding domain subunit mutations induces broad-spectrum immune response against SARS-CoV-2 variants of concern. Vaccines (Basel). 2022;10(10):1653. DOI:10.3390/vaccines10101653
  • Yang J, Liu MQ, Liu L, et al. A triple-RBD-based mucosal vaccine provides broad protection against SARS-CoV-2 variants of concern. Cell Mol Immunol. 2022;19(11):1279–1289. DOI:10.1038/s41423-022-00929-3
  • Tan TK, Rijal P, Rahikainen R, et al. A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses. Nat Commun. 2021;12(1):542. DOI:10.1038/s41467-020-20654-7
  • Wang W, Huang B, Zhu Y, et al. Ferritin nanoparticle-based SARS-CoV-2 RBD vaccine induces a persistent antibody response and long-term memory in mice. Cell Mol Immunol. 2021;18(3):749–751. DOI:10.1038/s41423-021-00643-6
  • Joyce MG, Chen WH, Sankhala RS, et al. SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity. Cell Rep. 2021;37(12):110143. DOI:10.1016/j.celrep.2021.110143
  • King HAD, Joyce MG, Lakhal-Naouar I, et al. Efficacy and breadth of adjuvanted SARS-CoV-2 receptor-binding domain nanoparticle vaccine in macaques. Proc Natl Acad Sci U S A. 2021;118(38):e2106433118. DOI:10.1073/pnas.2106433118
  • Walls AC, Fiala B, Schafer A, et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell. 2020;183(5):1367–1382 e17. doi:10.1016/j.cell.2020.10.043.
  • Arunachalam PS, Feng Y, Ashraf U, et al. Durable protection against the SARS-CoV-2 Omicron variant is induced by an adjuvanted subunit vaccine. Sci Transl Med. 2022;14(658):eabq4130. DOI:10.1126/scitranslmed.abq4130
  • Huang WC, Zhou S, He X, et al. SARS-CoV-2 RBD neutralizing antibody induction is enhanced by particulate vaccination. Adv Mater. 2020;32(50):e2005637. DOI:10.1002/adma.202005637
  • Jearanaiwitayakul T, Seesen M, Chawengkirttikul R, et al. Intranasal administration of RBD nanoparticles confers induction of mucosal and dystemic immunity against SARS-CoV-2. Vaccines (Basel). 2021;9(7):768. DOI:10.3390/vaccines9070768
  • Shi J, Zheng J, Zhang X, et al. RBD-mRNA vaccine induces broadly neutralizing antibodies against Omicron and multiple other variants and protects mice from SARS-CoV-2 challenge. Transl Res. 2022;248:11–21.
  • Stewart-Jones GBE, Elbashir SM, Wu K, et al. Development of SARS-CoV-2 mRNA vaccines encoding spike N-terminal and receptor binding domains. bioRxiv. 2022. DOI:10.1101/2022.10.07.511319
  • Elia U, Ramishetti S, Rosenfeld R, et al. Design of SARS-CoV-2 hFc-conjugated receptor-binding domain mRNA vaccine delivered via lipid nanoparticles. ACS Nano. 2021;15(6):9627–9637. DOI:10.1021/acsnano.0c10180
  • Liang Q, Wang Y, Zhang S, et al. RBD trimer mRNA vaccine elicits broad and protective immune responses against SARS-CoV-2 variants. iScience. 2022;25(4):104043. DOI:10.1016/j.isci.2022.104043
  • Sun W, He L, Zhang H, et al. The self-assembled nanoparticle-based trimeric RBD mRNA vaccine elicits robust and durable protective immunity against SARS-CoV-2 in mice. Signal Transduct Target Ther. 2021;6(1):340. DOI:10.1038/s41392-021-00750-w
  • Jung BK, An YH, Jang JJ, et al. The human ACE-2 receptor binding domain of SARS-CoV-2 express on the viral surface of the Newcastle disease virus as a non-replicating viral vector vaccine candidate. PLoS ONE. 2022;17(2):e0263684. DOI:10.1371/journal.pone.0263684
  • Liu F, Feng C, Xu S, et al. An AAV vaccine targeting the RBD of the SARS-CoV-2 S protein induces effective neutralizing antibody titers in mice and canines. Vaccine. 2022;40(9):1208–1212. DOI:10.1016/j.vaccine.2022.01.030
  • Boulton S, Poutou J, Martin NT, et al. Single-dose replicating poxvirus vector-based RBD vaccine drives robust humoral and T cell immune response against SARS-CoV-2 infection. Mol Ther. 2022;30(5):1885–1896. DOI:10.1016/j.ymthe.2021.10.008
  • Cao X, Zai J, Zhao Q, et al. Intranasal immunization with recombinant Vaccinia virus encoding trimeric SARS-CoV-2 spike receptor-binding domain induces neutralizing antibody. Vaccine. 2022;40(40):5757–5763. DOI:10.1016/j.vaccine.2022.08.054
  • Tai W, Zhang X, He Y, et al. Identification of SARS-CoV RBD-targeting monoclonal antibodies with cross-reactive or neutralizing activity against SARS-CoV-2. Antiviral Res. 2020;179:104820.
  • Dai L, Zheng T, Xu K, et al. A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell. 2020;182(3):722–733 e11. doi:10.1016/j.cell.2020.06.035.
  • Gattinger P, Kratzer B, Tulaeva I, et al. Vaccine based on folded receptor binding domain-PreS fusion protein with potential to induce sterilizing immunity to SARS-CoV-2 variants. Allergy. 2022;77(8):2431–2445. DOI:10.1111/all.15305
  • Zang J, Zhu Y, Zhou Y, et al. Yeast-produced RBD-based recombinant protein vaccines elicit broadly neutralizing antibodies and durable protective immunity against SARS-CoV-2 infection. Cell Discov. 2021;7(1):71. DOI:10.1038/s41421-021-00315-9
  • Hotez PJ, Bottazzi ME. Developing a low-cost and accessible COVID-19 vaccine for global health. PLoS Negl Trop Dis. 2020;14(7):e0008548.
  • Mardanova ES, Kotlyarov RY, Ravin NV. High-yield production of receptor binding domain of SARS-CoV-2 linked to bacterial Flagellin in plants using self-replicating viral vector pEff. Plants (Basel). 2021;10(12):2682.
  • Siriwattananon K, Manopwisedjaroen S, Shanmugaraj B, et al. Immunogenicity studies of plant-produced SARS-CoV-2 receptor binding domain-based subunit vaccine candidate with different adjuvant formulations. Vaccines (Basel). 2021;9(7):744. DOI:10.3390/vaccines9070744
  • Brindha S, Kuroda Y. A multi-disulfide receptor-binding domain (RBD) of the SARS-CoV-2 spike protein expressed in E. coli using a SEP-tag produces antisera interacting with the mammalian cell expressed spike (S1) protein. Int J Mol Sci. 2022;23(3):1703.
  • He Y, Qi J, Xiao L, et al. Purification and characterization of the receptor-binding domain of SARS-CoV-2 spike protein from Escherichia coli. Eng Life Sci. 2021;21(6):453–460. DOI:10.1002/elsc.202000106
  • Yang J, Wang W, Chen Z, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 2020;586(7830):572–577. DOI:10.1038/s41586-020-2599-8
  • Coria LM, Saposnik LM, Pueblas Castro C, et al. A novel bacterial protease inhibitor adjuvant in RBD-based COVID-19 vaccine formulations containing alum increases neutralizing antibodies, specific germinal center B cells and confers protection against SARS-CoV-2 infection in mice. Front Immunol. 2022;13:844837.
  • Routhu NK, Cheedarla N, Bollimpelli VS, et al. SARS-CoV-2 RBD trimer protein adjuvanted with Alum-3M-052 protects from SARS-CoV-2 infection and immune pathology in the lung. Nat Commun. 2021;12(1):3587. DOI:10.1038/s41467-021-23942-y
  • Owczarek B, Gerszberg A, Hnatuszko-Konka K. A brief reminder of systems of production and chromatography-based recovery of recombinant protein biopharmaceuticals. BioMed Res Int. 2019;2019:4216060.
  • Dalvie NC, Biedermann AM, Rodriguez-Aponte SA, et al. Scalable, methanol-free manufacturing of the SARS-CoV-2 receptor-binding domain in engineered Komagataella phaffii. Biotechnol Bioeng. 2022;119(2):657–662. DOI:10.1002/bit.27979
  • Poodts J, Smith I, Birenbaum JM, et al. Improved expression of SARS-CoV-2 spike RBD using the insect cell-baculovirus system. Viruses. 2022;14(12):2794. DOI:10.3390/v14122794
  • De March M, Terdoslavich M, Polez S, et al. Expression, purification and characterization of SARS-CoV-2 spike RBD in ExpiCHO cells. Protein Expr Purif. 2022;194:106071.
  • Farnos O, Venereo-Sanchez A, Xu X, et al. Rapid high-yield production of functional SARS-CoV-2 receptor binding domain by viral and non-viral transient expression for pre-clinical evaluation. Vaccines (Basel). 2020;8(4):654. DOI:10.3390/vaccines8040654
  • Argentinian AntiCovid C. Structural and functional comparison of SARS-CoV-2-spike receptor binding domain produced in Pichia pastoris and mammalian cells. Sci Rep. 2020;10(1):21779.
  • Facciola A, Visalli G, Lagana A, et al. An overview of vaccine adjuvants: current evidence and future perspectives. Vaccines (Basel). 2022;10(5):819. DOI:10.3390/vaccines10050819
  • Miki H, Nakahashi-Oda C, Sumida T, et al. Involvement of CD300a Phosphatidylserine immunoreceptor in aluminum salt adjuvant-induced Th2 responses. J Immunol. 2015;194(11):5069–5076. DOI:10.4049/jimmunol.1402915
  • Pino M, Abid T, Pereira Ribeiro S, et al. A yeast expressed RBD-based SARS-CoV-2 vaccine formulated with 3M-052-alum adjuvant promotes protective efficacy in non-human primates. Sci Immunol. 2021;6(61):eabh3634. DOI:10.1126/sciimmunol.abh3634
  • Chen J, Wang B, Caserto JS, et al. Sustained delivery of SARS-CoV-2 RBD subunit vaccine using a high affinity injectable Hydrogel Scaffold. Adv Healthc Mater. 2022;11(2):e2101714. DOI:10.1002/adhm.202101714
  • Yadav N, Vishwakarma P, Khatri R, et al. Comparative immunogenicity analysis of intradermal versus intramuscular administration of SARS-CoV-2 RBD epitope peptide-based immunogen in vivo. Microbes Infect. 2021;23(4–5):104843. DOI:10.1016/j.micinf.2021.104843
  • Ramot Y, Kronfeld N, Ophir Y, et al. Toxicity and local tolerance of a novel spike protein RBD vaccine against SARS-CoV-2, produced using the C1 Thermothelomyces Heterothallica protein expression platform. Toxicol Pathol. 2022;50(3):294–307. DOI:10.1177/01926233221090518
  • Tan HX, Juno JA, Lee WS, et al. Immunogenicity of prime-boost protein subunit vaccine strategies against SARS-CoV-2 in mice and macaques. Nat Commun. 2021;12(1):1403. DOI:10.1038/s41467-021-21665-8
  • Guo Y, He W, Mou H, et al. An engineered receptor-binding domain improves the immunogenicity of multivalent SARS-CoV-2 vaccines. MBio. 2021;12(3): e00930-21. doi:10.1128/mBio.00930-21.
  • Shi J, Jin X, Ding Y, et al. Receptor-binding domain proteins of SARS-CoV-2 variants elicited robust antibody responses cross-reacting with wild-type and mutant viruses in mice. Vaccines (Basel). 2021;9(12):1383. DOI:10.3390/vaccines9121383
  • Zou J, Jing H, Zhang X, et al. Alpha-Hemolysin-aided oligomerization of the spike protein RBD resulted in improved immunogenicity and neutralization against SARS-CoV-2 variants. Front Immunol. 2021;12:757691.
  • Xu K, Gao P, Liu S, et al. Protective prototype-Beta and Delta-Omicron chimeric RBD-dimer vaccines against SARS-CoV-2. Cell. 2022;185(13):2265–2278 e14. doi:10.1016/j.cell.2022.04.029.
  • Zhang J, Han ZB, Liang Y, et al. A mosaic-type trimeric RBD-based COVID-19 vaccine candidate induces potent neutralization against Omicron and other SARS-CoV-2 variants. Elife. 2022;11:e78633.
  • Czajkowsky DM, Hu J, Shao Z, et al. Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med. 2012;4(10):1015–1028. DOI:10.1002/emmm.201201379
  • Levin D, Golding B, Strome SE, et al. Fc fusion as a platform technology: potential for modulating immunogenicity. Trends Biotechnol. 2015;33(1):27–34. DOI:10.1016/j.tibtech.2014.11.001
  • Liu Z, Xu W, Xia S, et al. RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response. Signal Transduct Target Ther. 2020;5(1):282. DOI:10.1038/s41392-020-00402-5
  • Luo D, Yang X, Li T, et al. An updated RBD-Fc fusion vaccine booster increases neutralization of SARS-CoV-2 Omicron variants. Signal Transduct Target Ther. 2022;7(1):327. DOI:10.1038/s41392-022-01185-7
  • Vu MN, Kelly HG, Kent SJ, et al. Current and future nanoparticle vaccines for COVID-19. EBioMedicine. 2021;74:103699.
  • Zheng B, Peng W, Guo M, et al. Inhalable nanovaccine with biomimetic coronavirus structure to trigger mucosal immunity of respiratory tract against COVID-19. Chem Eng J. 2021;418:129392.
  • Walls AC, Miranda MC, Schafer A, et al. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell. 2021;184(21):5432–5447 e16. DOI:10.1016/j.cell.2021.09.015
  • Chen R, Zhang X, Yuan Y, et al. Development of receptor-binding domain (RBD)-conjugated nanoparticle vaccines with broad neutralization against SARS-CoV-2 Delta and Other variants. Adv Sci. 2022;9(11):e2105378. DOI:10.1002/advs.202105378
  • Cohen AA, van Doremalen N, Greaney AJ, et al. Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science. 2022;377(6606):eabq0839. doi:10.1126/science.abq0839.
  • Kang YF, Sun C, Sun J, et al. Quadrivalent mosaic HexaPro-bearing nanoparticle vaccine protects against infection of SARS-CoV-2 variants. Nat Commun. 2022;13(1):2674. DOI:10.1038/s41467-022-30222-w
  • Cohen AA, Gnanapragasam PNP, Lee YE, et al. Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science. 2021;371(6530):735–741. DOI:10.1126/science.abf6840
  • Lamb YN. Bnt162b2 mRNA COVID-19 vaccine: first approval. Drugs. 2021;81(4):495–501.
  • U.S. Food and drug administration COVID-19 vaccines. [Cited Apr. 21, 2023]. Available from: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines.
  • Liu C, Rcheulishvili N, Shen Z, et al. Development of an LNP-encapsulated mRNA-RBD vaccine against SARS-CoV-2 and its variants. Pharmaceutics. 2022;14(5):1101. DOI:10.3390/pharmaceutics14051101
  • Zang J, Yin Y, Xu S, et al. Neutralizing potency of prototype and Omicron RBD mRNA vaccines against Omicron variant. Front Immunol. 2022;13:908478.
  • Heath PT, Galiza EP, Baxter DN, et al. Safety and efficacy of NVX-CoV2373 COVID-19 Vaccine. N Engl J Med. 2021;385(13):1172–1183. DOI:10.1056/NEJMoa2107659
  • Munoz FM, Sher LD, Sabharwal C, et al. Evaluation of BNT162b2 COVID-19 vaccine in children younger than 5 years of age. N Engl J Med. 2023;388(7):621–634. DOI:10.1056/NEJMoa2211031
  • Munro APS, Sher LD, Sabharwal C, et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet. 2021;398(10318):2258–2276. DOI:10.1016/S0140-6736(21)02717-3
  • Thomas SJ, Moreira ED Jr., Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine through 6 months. N Engl J Med. 2021;385(19):1761–1773. DOI:10.1056/NEJMoa2110345
  • Dai L, Gao L, Tao L, et al. Efficacy and safety of the RBD-dimer-based COVID-19 vaccine ZF2001 in adults. N Engl J Med. 2022;386(22):2097–2111. DOI:10.1056/NEJMoa2202261
  • Feitsma EA, Janssen YF, Boersma HH, et al. A randomized phase I/II safety and immunogenicity study of the Montanide-adjuvanted SARS-CoV-2 spike protein-RBD-Fc vaccine, AKS-452. Vaccine. 2023;41(13):2184–2197. DOI:10.1016/j.vaccine.2023.02.057
  • Salimian J, Ahmadi A, Amani J, et al. Safety and immunogenicity of a recombinant receptor-binding domain-based protein subunit vaccine (Noora vaccine) against COVID-19 in adults: a randomized, double-blind, placebo-controlled, Phase 1 trial. J Med Virol. 2022;95(2). DOI:10.1002/jmv.28097
  • Thuluva S, Paradkar V, Gunneri SR, et al. Evaluation of safety and immunogenicity of receptor-binding domain-based COVID-19 vaccine (Corbevax) to select the optimum formulation in open-label, multicentre, and randomised phase-1/2 and phase-2 clinical trials. EBioMedicine. 2022;83:104217.
  • Hernandez-Bernal F, Ricardo-Cobas MC, Martin-Bauta Y, et al. Safety, tolerability, and immunogenicity of a SARS-CoV-2 recombinant spike RBD protein vaccine: a randomised, double-blind, placebo-controlled, phase 1-2 clinical trial (ABDALA Study). EClinicalMedicine. 2022;46:01383.
  • Yang S, Li Y, Dai L, et al. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis. 2021;21(8):1107–1119. DOI:10.1016/S1473-3099(21)00127-4
  • Kudriavtsev AV, Vakhrusheva AV, Kryuchkov NA, et al. Safety and immunogenicity of betuvax-CoV-2, an RBD-Fc-based SARS-CoV-2 recombinant vaccine: preliminary results of the first-in-human, randomized, double-blind, placebo-controlled phase I/II clinical trial. Vaccines (Basel). 2023;11(2):326. DOI:10.3390/vaccines11020326
  • Guirakhoo F, Wang S, Wang CY, et al. High neutralizing antibody levels against severe acute respiratory syndrome coronavirus 2 Omicron BA.1 and BA.2 after UB-612 vaccine booster. J Infect Dis. 2022;226(8):1401–1406. DOI:10.1093/infdis/jiac241
  • Puga-Gomez R, Ricardo-Delgado Y, Rojas-Iriarte C, et al. Open-label phase I/II clinical trial of SARS-CoV-2 receptor binding domain-tetanus toxoid conjugate vaccine (FINLAY-FR-2) in combination with receptor binding domain-protein vaccine (FINLAY-FR-1A) in children. Int J Infect Dis. 2023;126:164–173.
  • Song JY, Choi WS, Heo JY, et al. Safety and immunogenicity of a SARS-CoV-2 recombinant protein nanoparticle vaccine (GBP510) adjuvanted with AS03: a randomised, placebo-controlled, observer-blinded phase 1/2 trial. EClinicalMedicine. 2022;51:101569.
  • Lovell JF, Baik YO, Choi SK, et al. Interim analysis from a phase 2 randomized trial of EuCorVac-19: a recombinant protein SARS-CoV-2 RBD nanoliposome vaccine. BMC Med. 2022 30;20(1):462. DOI:10.1186/s12916-022-02661-1
  • COVID19 Vaccine Tracker. SpyBiotech: rBD SARS-CoV-2 HBsAg VLP. [Cited Dec. 2, 2023]. Available from: https://covid19.trackvaccines.org/vaccines/44/.
  • Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251–254. DOI:10.1038/nature12005
  • Dejnirattisai W, Zhou D, Ginn HM, et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell. 2021;184(8):2183–2200 e22. DOI:10.1016/j.cell.2021.02.032
  • Andreano E, Nicastri E, Paciello I, et al. Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell. 2021;184(7):1821–1835 e16. DOI:10.1016/j.cell.2021.02.035
  • Weinreich DM, Sivapalasingam S, Norton T, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with COVID-19. N Engl J Med. 2021;384(3):238–251. DOI:10.1056/NEJMoa2035002
  • Baum A, Ajithdoss D, Copin R, et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science. 2020;370(6520):1110–1115. DOI:10.1126/science.abe2402
  • Zost SJ, Gilchuk P, Case JB, et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature. 2020;584(7821):443–449. DOI:10.1038/s41586-020-2548-6
  • World Health Organization. Tracking SARS-CoV-2 variants. [Cited Apr. 21, 2023]. Available from: https://www.who.int/activities/tracking-SARS-CoV-2-variants.
  • Chiu CH, Chang YH, Tao CW, et al. Boosting with multiple doses of mRNA vaccine after priming with two doses of protein subunit vaccine MVC-COV1901 elicited robust humoral and cellular immune responses against emerging SARS-CoV-2 variants. Microbiol Spectr. 2022;10(5):e0060922. DOI:10.1128/spectrum.00609-22
  • Hou X, Zaks T, Langer R, et al. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–1094. DOI:10.1038/s41578-021-00358-0
  • Begines B, Ortiz T, Perez-Aranda M, et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials (Basel). 2020;10(7):1403. DOI:10.3390/nano10071403
  • Guo H, Hu B, Si HR, et al. Identification of a novel lineage bat SARS-related coronaviruses that use bat ACE2 receptor. Emerg Microbes Infect. 2021;10(1):1507–1514. DOI:10.1080/22221751.2021.1956373
  • Lau SKP, Fan RYY, Zhu L, et al. Isolation of MERS-related coronavirus from lesser bamboo bats that uses DPP4 and infects human-DPP4-transgenic mice. Nat Commun. 2021;12(1):216. DOI:10.1038/s41467-020-20458-9
  • Zhang N, Shang J, Li C, et al. An overview of Middle East respiratory syndrome coronavirus vaccines in preclinical studies. Expert Rev Vaccines. 2020;19(9):817–829. DOI:10.1080/14760584.2020.1813574
  • Luo CM, Wang N, Yang XL, et al. Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus. J Virol. 2018;92(13):e00116–118. DOI:10.1128/JVI.00116-18