2,586
Views
0
CrossRef citations to date
0
Altmetric
Review

Suspended cell lines for inactivated virus vaccine production

, , , , , , , , & show all
Pages 468-480 | Received 01 Oct 2022, Accepted 11 May 2023, Published online: 23 May 2023

References

  • Plotkin S. History of vaccination Proceedings of the National Academy of Sciences of the United States of America. 2014;111:p. 12283–12287.
  • Thomas JF, Magill T. Vaccination of human subjects with virus of human influenza. Pro Soc Exp Biol Med. 1936;33(4):604–606.
  • Peng X, Hu X, Salazar MA. On reducing the risk of vaccine-associated paralytic poliomyelitis in the global transition from oral to inactivated poliovirus vaccine. Lancet. 2018;392(10147):610–612. (London, England). DOI:10.1016/S0140-6736(18)30483-5
  • TT N, CH C, CY L, et al. Efficacy, safety, and immunogenicity of an inactivated, adjuvanted enterovirus 71 vaccine in infants and children: a multiregion, double-blind, randomised, placebo-controlled, phase 3 trial. (London, England). Lancet. 2022;399(10336):1708–1717
  • J J, K SJ, O HS, et al. Protective effectiveness of inactivated hantavirus vaccine against hemorrhagic fever with renal syndrome. J Infect Dis. 2018;217(9):1417–1420. DOI:10.1093/infdis/jiy037
  • OP L, VL S, AE N, et al. Ethylenimine-inactivated rabies vaccine of tissue culture origin. J Clin Microbiol. 1976;3(1):26–33. DOI:10.1128/jcm.3.1.26-33.1976
  • Phelan M. Techniques for mammalian cell tissue culture. Curr Protoc Neurosci. 2007;38(1): Appendix 3B. DOI:10.1002/0471142727.nsa03bs38
  • Khoshnood S, Arshadi M, Akrami S, et al. An overview on inactivated and live-attenuated SARS-CoV-2 vaccines. J Clin Lab Analysis. 2022;36(5):e24418. DOI:10.1002/jcla.24418
  • Shittu I, Zhu Z, Lu Y, et al. Development, characterization and optimization of a new suspension chicken-induced pluripotent cell line for the production of Newcastle disease vaccine. Biologicals. 2016;44(1):24–32. DOI:10.1016/j.biologicals.2015.09.002
  • Sanders BP, Edo-Matas D, Custers JH, et al. PER.C6(®) cells as a serum-free suspension cell platform for the production of high titer poliovirus: a potential low cost of goods option for world supply of inactivated poliovirus vaccine. Vaccine. 2013 Jan 21;31(5):850–856. DOI:10.1016/j.vaccine.2012.10.070
  • Briggs DJ. The role of vaccination in rabies prevention. Curr Opin Virol. 2012 Jun;2(3):309–314.
  • Park S, Kim JY, Ryu KH, et al. Production of a foot-and-mouth disease vaccine antigen using suspension-adapted BHK-21 cells in a bioreactor. Vaccines (Basel). 2021 May 13;9(5):505. DOI:10.3390/vaccines9050505
  • Genzel Y, Behrendt I, Konig S, et al. Metabolism of MDCK cells during cell growth and influenza virus production in large-scale microcarrier culture. Vaccine. 2004 Jun 2;22(17–18):2202–2208. DOI:10.1016/j.vaccine.2003.11.041
  • Genzel Y, Olmer RM, Schäfer B, et al. Wave microcarrier cultivation of MDCK cells for influenza virus production in serum containing and serum-free media. Vaccine. 2006 Aug 28;24(35–36):6074–6087. DOI:10.1016/j.vaccine.2006.05.023
  • Hu AY, Weng TC, Tseng YF, et al. Microcarrier-based MDCK cell culture system for the production of influenza H5N1 vaccines. Vaccine. 2008 Oct 23;26(45):5736–5740. DOI:10.1016/j.vaccine.2008.08.015
  • Van Wezel AL. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature. 1967 Oct 7;216(5110):64–65. DOI:10.1038/216064a0
  • Merten OW. Development of serum-free media for cell growth and production of viruses/viral vaccines–safety issues of animal products used in serum-free media. Dev Biol (Basel). 2002;111:233–257.
  • Frazzati-Gallina NM, Paoli RL, Mourão-Fuches RM, et al. Higher production of rabies virus in serum-free medium cell cultures on microcarriers. J Biotechnol. 2001 Dec 14;92(1):67–72. DOI:10.1016/S0168-1656(01)00362-5
  • Genzel Y. Designing cell lines for viral vaccine production: where do we stand? Biotechnol J. 2015 May;10(5):728–740.
  • Rodrigues AF, Fernandes P, Laske T, et al. Cell bank origin of MDCK parental cells shapes adaptation to serum-free suspension culture and canine adenoviral vector production. Int J Mol Sci. 2020 Aug 25;21(17):6111. DOI:10.3390/ijms21176111
  • Schröder M, Matischak K, Friedl P. Serum- and protein-free media formulations for the Chinese hamster ovary cell line DUKXB11. J Biotechnol. 2004 Mar 18;108(3):279–292.
  • Malm M, Saghaleyni R, Lundqvist M, et al. Evolution from adherent to suspension: systems biology of HEK293 cell line development. Sci Rep. 2020 Nov 4;10(1):18996. DOI:10.1038/s41598-020-76137-8
  • Dill V, Hoffmann B, Zimmer A, et al. Influence of cell type and cell culture media on the propagation of foot-and-mouth disease virus with regard to vaccine quality. Virol J. 2018 Mar 16;15(1):46. DOI:10.1186/s12985-018-0956-0
  • Paillet C, Forno G, Kratje R, et al. Suspension-Vero cell cultures as a platform for viral vaccine production. Vaccine. 2009 Oct 30;27(46):6464–6467. DOI:10.1016/j.vaccine.2009.06.020
  • Manini I, Domnich A, Amicizia D, et al. Flucelvax (Optaflu) for seasonal influenza. Expert Rev Vaccines. 2015 Jun;14(6):789–804.
  • Manini I, Trombetta CM, Lazzeri G, et al. Egg-independent influenza vaccines and vaccine candidates. Vaccines (Basel). 2017 Jul 18;5(3). DOI:10.3390/vaccines5030018
  • Hegde NR. Cell culture-based influenza vaccines: a necessary and indispensable investment for the future. Hum Vaccin Immunother. 2015;11(5):1223–1234.
  • Lamb YN. Cell-based quadrivalent inactivated influenza virus vaccine (Flucelvax(®) Tetra/Flucelvax Quadrivalent(®)): a review in the prevention of influenza. Drugs. 2019 Aug;79(12):1337–1348.
  • Wang H, Guo S, Li Z, et al. Suspension culture process for H9N2 avian influenza virus (strain Re-2). Arch Virol. 2017 Oct;162(10):3051–3059.
  • Huang D, Peng WJ, Ye Q, et al. Serum-Free Suspension Culture of MDCK Cells for Production of Influenza H1N1 Vaccines. PLoS ONE. 2015;10(11):e0141686. DOI:10.1371/journal.pone.0141686
  • BIO S. Status of COVID-19 Vaccines within WHO EUL/PQ evaluation process. Assessment Status of COVID-19 Vaccines within WHO EUL/PQ Evaluation Process. World Health Organization; 2021.
  • Rourou S, Ben Zakkour M, Kallel H. Adaptation of Vero cells to suspension growth for rabies virus production in different serum free media. Vaccine. 2019 Nov 8;37(47):6987–6995.
  • Lee DK, Park J, Seo DW. Suspension culture of Vero cells for the production of adenovirus type 5. Clin Exp Vaccine Res. 2020 Jan;9(1):48–55.
  • Fulber JPC, Farnos O, Kiesslich S, et al. Process development for Newcastle disease virus-vectored vaccines in serum-free vero cell suspension cultures. Vaccines (Basel). 2021 Nov 16;9(11):1335. DOI:10.3390/vaccines9111335
  • P C, F G, K R, et al. Suspension-Vero cell cultures as a platform for viral vaccine production. Vaccine. 2009;27(46):6464–6467. DOI:10.1016/j.vaccine.2009.06.020
  • BJ M, F B, AJ N. The large-scale cultivation of VERO cells in micro-carrier culture for virus vaccine production. Preliminary results for killed poliovirus vaccine. Dev Biol Stand. 1981;47:55–64.
  • C Y, A CJ, S KM, et al. Inactivated Hantaan virus vaccine derived from suspension culture of Vero cells. Vaccine. 2003;21(17–18):1867–1873. DOI:10.1016/S0264-410X(03)00005-7
  • SC W, CC L, WC L. Optimization of microcarrier cell culture process for the inactivated enterovirus type 71 vaccine development. Vaccine. 2004;22(29–30):3858–3864.
  • Chen TH, Liu WC, Chen IC, et al. Recombinant hemagglutinin produced from Chinese Hamster Ovary (CHO) stable cell clones and a PELC/CpG combination adjuvant for H7N9 subunit vaccine development. Vaccine. 2019 Nov 8;37(47):6933–6941. DOI:10.1016/j.vaccine.2019.02.040
  • Nikolay A, Castilho LR, Reichl U, et al. Propagation of Brazilian Zika virus strains in static and suspension cultures using Vero and BHK cells. Vaccine. 2018 May 24;36(22):3140–3145. DOI:10.1016/j.vaccine.2017.03.018
  • Zou X, Zhu Y, Bao H, et al. Recombination of host cell mRNA with the Asia 1 foot-and-mouth disease virus genome in cell suspension culture. Arch Virol. 2019 Jan;164(1):41–50.
  • Gelinas JF, Azizi H, Kiesslich S, et al. Production of Rvsv-ZEBOV in serum-free suspension culture of HEK 293SF cells. Vaccine. 2019 Oct 16;37(44):6624–6632. DOI:10.1016/j.vaccine.2019.09.044
  • Joe CC, Jiang J, Linke T, et al. Manufacturing a chimpanzee adenovirus-vectored SARS-CoV-2 vaccine to meet global needs. Biotechnol Bioeng. 2022;119(1):48–58. DOI:10.1002/bit.27945
  • Wang P, Huang S, Hao C, et al. Establishment of a Suspension MDBK Cell Line in Serum-Free Medium for Production of Bovine Alphaherpesvirus-1. Vaccines (Basel). 2021 Sep 9;9(9). DOI:10.3390/vaccines9091006
  • Puente-Massaguer E, Grau-Garcia P, Strobl F, et al. Accelerating HIV-1 VLP production using stable High Five insect cell pools. Biotechnol J. 2021 Apr;16(4):e2000391.
  • Yim-Im W, Huang H, Park J, et al. Comparison of ZMAC and MARC-145 Cell Lines for Improving Porcine Reproductive and Respiratory Syndrome Virus Isolation from Clinical Samples. J Clin Microbiol. 2021 Feb 18;59(3). DOI:10.1128/JCM.01757-20
  • Ma T, Ouyang T, Ouyang H, et al. Porcine circovirus 2 proliferation can be enhanced by stably expressing porcine IL-2 gene in PK-15 cell. Virus Res. 2017 Jan 2;227:143–149. DOI:10.1016/j.virusres.2016.10.006
  • Granicher G, Coronel J, Pralow A, et al. Efficient influenza a virus production in high cell density using the novel porcine suspension cell line PBG.PK2.1. Vaccine. 2019 Nov 8;37(47):7019–7028. DOI:10.1016/j.vaccine.2019.04.030
  • Lin H, Ma Z, Chen L, et al. Recombinant Swinepox Virus Expressing Glycoprotein E2 of Classical Swine Fever Virus Confers Complete Protection in Pigs upon Viral Challenge. Front Vet Sci. 2017;4:81.
  • Léon A, David AL, Madeline B, et al. The EB66® cell line as a valuable cell substrate for MVA-based vaccines production. Vaccine. 2016;34(48):5878–5885. DOI:10.1016/j.vaccine.2016.10.043
  • Nikolay A, Léon A, Schwamborn K, et al. Process intensification of EB66® cell cultivations leads to high-yield yellow fever and Zika virus production. Appl Microbiol Biotechnol. 2018;102(20):8725–8737. DOI:10.1007/s00253-018-9275-z
  • Schuind A, Segall N, Drame M, et al. Immunogenicity and Safety of an EB66 Cell-Culture-Derived Influenza A/Indonesia/5/2005(H5N1) AS03-Adjuvanted Vaccine: a Phase 1 Randomized Trial. J Infect Dis. 2015;212(4):531–541. DOI:10.1093/infdis/jiv091
  • Endo M, Tanishima M, Ibaragi K, et al. Clinical phase II and III studies of an AS03-adjuvanted H5N1 influenza vaccine produced in an EB66 ® cell culture platform. Influenza Other Respir Viruses. 2020;14(5):551–563. DOI:10.1111/irv.12755
  • Yang Z, Wang J, Wang X, et al. Immunogenicity and protective efficacy of an EB66 ® cell culture-derived duck Tembusu virus vaccine. Avian Pathology: J WVPA. 2020;49(5):448–456. DOI:10.1080/03079457.2020.1763914
  • Wen L, Zhang A, Li Y, et al. Suspension culture of Marek’s disease virus and evaluation of its immunological effects. Avian Pathol. 2019 Jun;48(3):183–190.
  • Madin SH, Darby NB Jr. Established kidney cell lines of normal adult bovine and ovine origin. Proc Soc Exp Biol Med. 1958 Jul;98(3):574–576.
  • Tree JA, Richardson C, Fooks AR, et al. Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus a vaccine strains. Vaccine. 2001 May 14;19(25–26):3444–3450. DOI:10.1016/S0264-410X(01)00053-6
  • World Health Organization. Cell culture as a substrate for the production of influenza vaccines: memorandum from a WHO meeting. Bull World Health Organ. 1995;73(4):431–435.
  • Huang D, Zhao L, Tan W. Adherent and single-cell suspension culture of Madin-Darby canine kidney cells in serum-free medium. Sheng Wu Gong Cheng Xue Bao. 2011 Apr;27(4):645–652.
  • Bissinger T, Wu Y, Marichal-Gallardo P, et al. Towards integrated production of an influenza a vaccine candidate with MDCK suspension cells. Biotechnol Bioeng. 2021 Oct;118(10):3996–4013.
  • Yasumura Y. The research for the SV40 by means of tissue culture technique. Nippon Rinsho. 1963;21(6):1201–1219.
  • Knezevic I, Stacey G, Petricciani J, et al. Evaluation of cell substrates for the production of biologicals: revision of WHO recommendations: report of the WHO Study Group on Cell Substrates for the Production of Biologicals. 22–23 April 2009Bethesda, USA. Biologicals. 2010;38(1)162–169
  • Kiesslich S, Kamen AA. Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnol Adv. 2020 Nov 15;44:107608.
  • Jordan I, Sandig V. Matrix and backstage: cellular substrates for viral vaccines. Viruses. 2014 Apr 11;6(4):1672–1700.
  • Shen CF, Guilbault C, Li X, et al. Development of suspension adapted Vero cell culture process technology for production of viral vaccines. Vaccine. 2019 Nov 8;37(47):6996–7002. DOI:10.1016/j.vaccine.2019.07.003
  • Paillet C, Forno G, Soldano N, et al. Statistical optimization of influenza H1N1 production from batch cultures of suspension Vero cells (sVero). Vaccine. 2011 Sep 22;29(41):7212–7217. DOI:10.1016/j.vaccine.2011.07.016
  • Logan M, Aucoin M. Media formulation to support the growth of Vero cells in suspension. Conference on vaccine technology VI University of Waterloo; 2018.
  • Puck TT. The genetics of somatic mammalian cells. Adv in Biol And Med Phys. 1957;5:75–101.
  • Wu S, Rish AJ, Skomo A, et al. Rapid serum-free/suspension adaptation: medium development using a definitive screening design for Chinese hamster ovary cells. Biotechnol Prog. 2021 Jul;37(4):e3154.
  • Chen TH, Liu WC, Lin CY, et al. Glycan-masking hemagglutinin antigens from stable CHO cell clones for H5N1 avian influenza vaccine development. Biotechnol Bioeng. 2019 Mar;116(3):598–609.
  • Eldi P, Cooper TH, Liu L, et al. Production of a Chikungunya Vaccine Using a CHO Cell and Attenuated Viral-Based Platform Technology. Mol Ther. 2017 Oct 4;25(10):2332–2344. DOI:10.1016/j.ymthe.2017.06.017
  • O’Rourke SM, Byrne G, Tatsuno G, et al. Robotic selection for the rapid development of stable CHO cell lines for HIV vaccine production. PLoS ONE. 2018;13(8):e0197656. DOI:10.1371/journal.pone.0197656
  • Zhang W, Han L, Lin C, et al. Surface antibody and cytokine response to recombinant Chinese hamster ovary cell (CHO) hepatitis B vaccine. Vaccine. 2011 Aug 26;29(37):6276–6282. DOI:10.1016/j.vaccine.2011.06.045
  • Thompson LH, Baker RM. Isolation of mutants of cultured mammalian cells. Methods in cell biology. Vol. 6. Amsterdam: Elsevier; 1973. p. 209–281.
  • O'Flaherty R, Bergin A, Flampouri E, et al. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnol Adv. 2020;43:107552. DOI:10.1016/j.biotechadv.2020.107552
  • Lee N, Shin J, Park JH, et al. Targeted gene deletion using DNA-free RNA-guided Cas9 nuclease accelerates adaptation of CHO cells to suspension culture. ACS Synth Biol. 2016;5(11):1211–1219. DOI:10.1021/acssynbio.5b00249
  • Wu J, Han D, Wei M, et al. Domestication of suspension CHO cells and its application in the expression of anti-PSMA antibody. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2016 Jan;32(1):1–4.
  • Dill V, Hoffmann B, Zimmer A, et al. Adaption of FMDV Asia-1 to Suspension Culture: cell Resistance is Overcome by Virus Capsid Alterations. Viruses. 2017 Aug 18;9(8). DOI:10.3390/v9080231
  • Graham FL, Smiley J, Russell WC, et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977 Jul;36(1):59–74.
  • Fontana D, Kratje R, Etcheverrigaray M, et al. Rabies virus-like particles expressed in HEK293 cells. Vaccine. 2014 May 19;32(24):2799–2804. DOI:10.1016/j.vaccine.2014.02.031
  • Conceição MM, Tonso A, Freitas CB, et al. Viral antigen production in cell cultures on microcarriers Bovine parainfluenza 3 virus and MDBK cells. Vaccine. 2007 Nov 7;25(45):7785–7795. DOI:10.1016/j.vaccine.2007.08.048
  • Lesko J, Veber P, Hrda M, et al. Large-scale production of infectious bovine rhinotracheitis virus in cell culture on microcarriers. Acta Virol. 1993 Feb;37(1):73–78.
  • Elazhary M, Derbyshire J. The cultivation of bovine adenovirus type 3 in cultures of suspended MDBK cells. Vet Microbiol. 1977;2(4):283–288.
  • Lunney JK, Fang Y, Ladinig A, et al. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): pathogenesis and Interaction with the Immune System. Ann Rev Anim Biosci. 2016;4(1):129–154. DOI:10.1146/annurev-animal-022114-111025
  • Sewell R, Backstrom M, Dalziel M, et al. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J Biol Chem. 2006 Feb 10;281(6):3586–3594. DOI:10.1074/jbc.M511826200
  • Jaluria P, Betenbaugh M, Konstantopoulos K, et al. Application of microarrays to identify and characterize genes involved in attachment dependence in HeLa cells. Metab Eng. 2007 May;9(3):241–251.
  • Bos PD, Zhang XH, Nadal C, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009 Jun 18;459(7249):1005–1009. DOI:10.1038/nature08021
  • Chu C, Lugovtsev V, Golding H, et al. Conversion of MDCK cell line to suspension culture by transfecting with human siat7e gene and its application for influenza virus production. Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14802–14807. DOI:10.1073/pnas.0905912106
  • Walther CG, Whitfield R, James DC. Importance of Interaction between Integrin and Actin Cytoskeleton in Suspension Adaptation of CHO cells. Appl Biochem Biotechnol. 2016 Apr;178(7):1286–1302.
  • Bachir AI, Horwitz AR, Nelson WJ, et al. Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells. Cold Spring Harb Perspect Biol. 2017 Jul 5;9(7):a023234. DOI:10.1101/cshperspect.a023234
  • Ren Y, Liu J, Xu H, et al. Knockout of integrin β1 in induced pluripotent stem cells accelerates skin-wound healing by promoting cell migration in extracellular matrix. Stem Cell Res Ther. 2022 Jul 30;13(1):389. DOI:10.1186/s13287-022-03085-7
  • Brakebusch C, Grose R, Quondamatteo F, et al. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. Embo J. 2000 Aug 1;19(15):3990–4003. DOI:10.1093/emboj/19.15.3990
  • Zhu AJ, Haase I, Watt FM. Signaling via beta1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6728–6733.
  • Murgia C, Blaikie P, Kim N, et al. Cell cycle and adhesion defects in mice carrying a targeted deletion of the integrin beta4 cytoplasmic domain. Embo J. 1998 Jul 15;17(14):3940–3951. DOI:10.1093/emboj/17.14.3940
  • Raymond K, Kreft M, Janssen H, et al. Keratinocytes display normal proliferation, survival and differentiation in conditional beta4-integrin knockout mice. J Cell Sci. 2005 Mar 1;118(Pt 5):1045–1060. DOI:10.1242/jcs.01689
  • Theodosiou M, Widmaier M, Böttcher RT, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. Elife. 2016 Jan 27;5:e10130. DOI:10.7554/eLife.10130
  • Chen P, Zheng X, Zhou Y, et al. Talin-1 interaction network promotes hepatocellular carcinoma progression. Oncotarget. 2017 Feb 21;8(8):13003–13014. DOI:10.18632/oncotarget.14674
  • Ma YQ, Qin J, Wu C, et al. Kindlin-2 (Mig-2): a co-activator of beta3 integrins. J Cell Bio. 2008 May 5;181(3):439–446. DOI:10.1083/jcb.200710196
  • Montanez E, Ussar S, Schifferer M, et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 2008 May 15;22(10):1325–1330. DOI:10.1101/gad.469408
  • Qin L, Chen X, Wu Y, et al. Steroid receptor coactivator-1 upregulates integrin α₅ expression to promote breast cancer cell adhesion and migration. Cancer Res. 2011 Mar 1;71(5):1742–1751. DOI:10.1158/0008-5472.CAN-10-3453
  • Xu J, Wu RC, O’Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer. 2009 Sep;9(9):615–630.
  • Hagel M, George EL, Kim A, et al. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol. 2002 Feb;22(3):901–915.
  • Zhu L, Liu H, Lu F, et al. Structural Basis of Paxillin Recruitment by Kindlin-2 in Regulating Cell Adhesion. Structure. 2019 Nov 5;27(11):1686–1697.e5. DOI:10.1016/j.str.2019.09.006
  • Karaköse E, Geiger T, Flynn K, et al. The focal adhesion protein PINCH-1 associates with EPLIN at integrin adhesion sites. J Cell Sci. 2015 Mar 1;128(5):1023–1033. DOI:10.1242/jcs.162545
  • Zhang Y, Chen K, Tu Y, et al. Assembly of the PINCH-ILK-CH-ILKBP complex precedes and is essential for localization of each component to cell-matrix adhesion sites. J Cell Sci. 2002 Dec 15;115(Pt 24):4777–4786. DOI:10.1242/jcs.00166
  • Shimoyama Y, Hirohashi S. Cadherin intercellular adhesion molecule in hepatocellular carcinomas: loss of E-cadherin expression in an undifferentiated carcinoma. Cancer Lett. 1991 May 1;57(2):131–135.
  • Chen WC, Obrink B. Cell-cell contacts mediated by E-cadherin (uvomorulin) restrict invasive behavior of L-cells. J Cell Bio. 1991 Jul;114(2):319–327.
  • Nagafuchi A, Shirayoshi Y, Okazaki K, et al. Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature. 1987 Sep 24-30;329(6137):341–343. DOI:10.1038/329341a0
  • Breen E, Clarke A, Steele G Jr., et al. Poorly differentiated colon carcinoma cell lines deficient in alpha-catenin expression express high levels of surface E-cadherin but lack Ca(2+)-dependent cell-cell adhesion. Cell Adhes Commun. 1993 Dec;1(3):239–250.
  • Vasioukhin V, Bauer C, Degenstein L, et al. Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell. 2001 Feb 23;104(4):605–617. DOI:10.1016/S0092-8674(01)00246-X
  • Yin T, Getsios S, Caldelari R, et al. Plakoglobin suppresses keratinocyte motility through both cell-cell adhesion-dependent and -independent mechanisms. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5420–5425. DOI:10.1073/pnas.0501676102
  • Caldelari R, de Bruin A, Baumann D, et al. A central role for the armadillo protein plakoglobin in the autoimmune disease pemphigus vulgaris. J Cell Bio. 2001 May 14;153(4):823–834. DOI:10.1083/jcb.153.4.823
  • Soe ZY, Prajuabjinda O, Myint PK, et al. Talin-2 regulates integrin functions in exosomes. Biochem Biophys Res Commun. 2019 May 7;512(3):429–434. DOI:10.1016/j.bbrc.2019.03.027
  • Cavarretta IT, Mukopadhyay R, Lonard DM, et al. Reduction of coactivator expression by antisense oligodeoxynucleotides inhibits ERalpha transcriptional activity and MCF-7 proliferation. Mol Endocrinol. 2002 Feb;16(2):253–270.
  • Wade R, Bohl J, Vande Pol S. Paxillin null embryonic stem cells are impaired in cell spreading and tyrosine phosphorylation of focal adhesion kinase. Oncogene. 2002 Jan 3;21(1):96–107.
  • Bierkamp C, McLaughlin KJ, Schwarz H, et al. Embryonic heart and skin defects in mice lacking plakoglobin. Dev Biol. 1996 Dec 15;180(2):780–785. DOI:10.1006/dbio.1996.0346
  • Zhong X, Rescorla FJ. Cell surface adhesion molecules and adhesion-initiated signaling: understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell Signal. 2012 Feb;24(2):393–401.
  • Liu H, Qi Y, Lei Z. Suspension domestication and serum-free culture of CHO-K1 Cells. J Tianjin Polytech. 2019;17(04):1–3+8.
  • N S, L G-L, A A. New approaches for characterization of the genetic stability of vaccine cell lines. Hum Vaccines Immunother. 2017;13(7):1669–1672.
  • World Health Organization. WHO expert committee on biological standardization. world health organization technical report series. Back Cover. Fifty-fourth report. 2014;987:1–266.