1,844
Views
1
CrossRef citations to date
0
Altmetric
Review

Molecular engineering tools for the development of vaccines against infectious diseases: current status and future directions

, , , ORCID Icon & ORCID Icon
Pages 563-578 | Received 17 Apr 2023, Accepted 16 Jun 2023, Published online: 26 Jun 2023

References

  • Bloom DE, Cadarette D. Infectious disease threats in the Twenty-First century: strengthening the global response [Review]. Front Immunol. 2019;10:10. doi: 10.3389/fimmu.2019.00549
  • Alqutob R, Al Nsour M, Tarawneh MR, et al. COVID-19 Crisis in Jordan: response, Scenarios, Strategies, and Recommendations. JMIR Public Health Surveill. 2020;6(3):e19332. doi: 10.2196/19332
  • Stawicki SP, Jeanmonod R, Miller AC, et al. The 2019-2020 novel coronavirus (severe acute respiratory syndrome coronavirus 2) pandemic: a joint American College of Academic International Medicine-World Academic Council of Emergency Medicine Multidisciplinary COVID-19 Working Group Consensus Paper. J Glob Infect Dis. 2020 Apr;12(2):47–93.
  • Rémy V, Zöllner Y, Heckmann U. Vaccination: the cornerstone of an efficient healthcare system. J Mark Access Health Policy. 2015;3(1):3. doi: 10.3402/jmahp.v3.27041
  • Mühlemann B, Vinner L, Margaryan A, et al. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking age. Science. 2020;369(6502):eaaw8977. doi: 10.1126/science.aaw8977
  • Trevelyan B, Smallman-Raynor M, Cliff AD. The spatial dynamics of poliomyelitis in the United States: from epidemic emergence to vaccine-induced retreat, 1910–1971. Ann Assoc Am Geogr. 2005;95(2):269–293. doi: 10.1111/j.1467-8306.2005.00460.x
  • Bányai K, László B, Duque J, et al. Systematic review of regional and temporal trends in global rotavirus strain diversity in the pre rotavirus vaccine era: insights for understanding the impact of rotavirus vaccination programs. Vaccine. 2012;30:A122–A130. doi: 10.1016/j.vaccine.2011.09.111
  • Chang M-H, Chen C-J, Lai M-S, et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. N Engl J Med. 1997;336(26):1855–1859. doi: 10.1056/NEJM199706263362602
  • Okada K, Miyazaki C, Kino Y, et al. Phase II and III clinical studies of diphtheria-tetanus-acellular pertussis vaccine containing inactivated polio vaccine derived from sabin strains (DTaP-Sipv)). J Infect Dis. 2013;208(2):275–283. doi: 10.1093/infdis/jit155
  • Lehtinen M, Dillner J. Clinical trials of human papillomavirus vaccines and beyond. Nat Rev Clin Oncol. 2013;10(7):400–410. doi: 10.1038/nrclinonc.2013.84
  • Sallam M. COVID-19 vaccine hesitancy worldwide: a concise systematic review of vaccine acceptance rates. Vaccines. 2021;9(2):160. doi: 10.3390/vaccines9020160
  • Baker RE, Mahmud AS, Miller IF, et al. Infectious disease in an era of global change. Nature Rev Microbiol. 2022;20(4):193–205. doi: 10.1038/s41579-021-00639-z
  • Lazarus JV, Romero D, Kopka CJ, et al. A multinational Delphi consensus to end the COVID-19 public health threat. Nature. 2022;611(7935):332–345. doi: 10.1038/s41586-022-05398-2
  • Burton DR. Advancing an HIV vaccine; advancing vaccinology. Nat Rev Immunol. 2019;19(2):77–78. doi: 10.1038/s41577-018-0103-6
  • Diamond MS, Ledgerwood JE, Pierson TC. Zika virus vaccine development: progress in the face of new challenges. Annu Rev Med. 2019;70(1):121–135. doi: 10.1146/annurev-med-040717-051127
  • Enquist LW, DiMaio D, Dermody TS. Recurring revolutions in virology. Annu Rev Virol. 2021;8(1):v–vii. doi: 10.1146/annurev-vi-08-032921-100002
  • Baay M, Lina B, Fontanet A, et al. Virology, epidemiology, immunology and vaccine development of SARS-CoV-2, update after nine months of pandemic. Biologicals. 2021;69:76–82. doi: 10.1016/j.biologicals.2020.11.003
  • Teng M, Yao Y, Nair V, et al. Latest advances of virology research using CRISPR/Cas9-based gene-editing technology and its application to vaccine development. Viruses. 2021;13(5):779. doi: 10.3390/v13050779
  • Debelouchina GT, Muir TW. A molecular engineering toolbox for the structural biologist. Q Rev Biophys. 2017 Jan;50:e7. doi: 10.1017/S0033583517000051
  • Liang Z, Zhu H, Wang X, et al. Adjuvants for coronavirus vaccines. Front Immunol. 2020;11:589833. doi: 10.3389/fimmu.2020.589833
  • Chang J. Adenovirus vectors: excellent tools for vaccine development. Immune Netw. 2021 Feb;21(1):e6. doi: 10.4110/in.2021.21.e6
  • Tenchov R, Bird R, Curtze AE, et al. Lipid nanoparticles─From liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15(11):16982–17015. doi: 10.1021/acsnano.1c04996
  • Ho W, Gao M, Li F, et al. Next-generation vaccines: nanoparticle-mediated DNA and mRNA delivery. Adv Healthcare Mater. 2021;10(8):2001812. doi: 10.1002/adhm.202001812
  • Nguyen B, Tolia NH. Protein-based antigen presentation platforms for nanoparticle vaccines. NPJ Vaccines. 2021;6(1):70. doi: 10.1038/s41541-021-00330-7
  • Kühn R, Torres RM. Cre/loxP recombination system and gene targeting. Methods Mol Biol. 2002;180:175–204.
  • McLellan MA, Rosenthal NA, Pinto AR. Cre-loxP-Mediated recombination: general principles and experimental considerations. Curr Protoc Mouse Biol. 2017;7(1):1–12. doi: 10.1002/cpmo.22
  • Minor PD. Live attenuated vaccines: historical successes and current challenges. Virology. 2015;479:379–392. doi: 10.1016/j.virol.2015.03.032
  • Lauer KB, Borrow R, Blanchard TJ, et al. Multivalent and multipathogen viral vector vaccines. Clin Vaccin Immunol. 2017;24(1):e00298–16. doi: 10.1128/CVI.00298-16
  • Hall SL, Sarris CM, Tierney EL, et al. A cold-adapted mutant of parainfluenza virus type 3 is attenuated and protective in chimpanzees. J Infect Dis. 1993;167(4):958–962. doi: 10.1093/infdis/167.4.958
  • Pliaka V, Kyriakopoulou Z, Markoulatos P. Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis. Expert Rev Vaccines. 2012;11(5):609–628. doi: 10.1586/erv.12.28
  • Lauring AS, Jones JO, Andino R. Rationalizing the development of live attenuated virus vaccines. Nat Biotechnol. 2010;28(6):573–579. doi: 10.1038/nbt.1635
  • Borca MV, Holinka LG, Berggren KA, et al. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses. Sci Rep. 2018;8(1):3154. doi: 10.1038/s41598-018-21575-8
  • Tang N, Zhang Y, Pedrera M, et al. A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system. Vaccine. 2018;36(5):716–722. doi: 10.1016/j.vaccine.2017.12.025
  • Wang W, Pan D, Fu W, et al. Development of a skin- and neuro-attenuated live vaccine for varicella. Nat Commun. 2022;13(1):824. doi: 10.1038/s41467-022-28329-1
  • Mo Z-J, Huang S-J, Qiu L-X, et al. Safety and immunogenicity of a skin- and neuro-attenuated live vaccine for varicella: a randomized, double-blind, controlled, dose-escalation and age de-escalation phase 1 clinical trial. Lancet Reg Health West Pac. 2023;34:100707. doi: 10.1016/j.lanwpc.2023.100707
  • Liang X, Sun L, Yu T, et al. A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging Pseudorabies virus. Sci Rep. 2016;6(1):19176. doi: 10.1038/srep19176
  • Song AJ, Palmiter RD. Detecting and avoiding problems when using the Cre-lox system. Trends Genet. 2018 May;34(5):333–340. doi: 10.1016/j.tig.2017.12.008
  • Harno E, Cottrell EC, White A. Metabolic pitfalls of CNS Cre-based technology. Cell Metab. 2013 Jul 2;18(1):21–28. doi: 10.1016/j.cmet.2013.05.019
  • Mosberg JA, Lajoie MJ, Church GM. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics. 2010 Nov;186(3):791–799. doi: 10.1534/genetics.110.120782
  • Pyne ME, Moo-Young M, Chung DA, et al. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol. 2015 Aug;81(15):5103–5114.
  • Huang X, Wang X, Zhang J, et al. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines. 2017;2(1):3. doi: 10.1038/s41541-017-0006-8
  • Batista P, Lopes AM, Mazzola PG, et al. Methods of endotoxin removal from biological preparations: a review. 2007.
  • Silva F, Queiroz JA, Domingues FC. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv. 2012;30(3):691–708. doi: 10.1016/j.biotechadv.2011.12.005
  • Wang K, Zhou L, Chen T, et al. Engineering for an HPV 9-valent vaccine candidate using genomic constitutive over-expression and low lipopolysaccharide levels in Escherichia coli cells. Microb Cell Fact. 2021;20(1):227. doi: 10.1186/s12934-021-01719-8
  • Mosberg JAW. Studying and improving Lambda Red recombination for genome engineering in Escherichia coli. Harvard University; 2013.
  • Kozovska Z, Rajcaniova S, Munteanu P, et al. CRISPR: history and perspectives to the future. Biomed Pharmacother. 2021;141:111917. doi: 10.1016/j.biopha.2021.111917
  • Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1911. doi: 10.1038/s41467-018-04252-2
  • Zhang Y, Showalter AM. CRISPR/Cas9 genome editing technology: a valuable tool for understanding plant cell wall biosynthesis and function. Front Plant Sci. 2020;11:589517. doi: 10.3389/fpls.2020.589517
  • Sharma G, Sharma AR, Bhattacharya M, et al. CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases. Mol Ther. 2021;29(2):571–586. doi: 10.1016/j.ymthe.2020.09.028
  • Wang D, Wang X-W, Peng X-C, et al. CRISPR/Cas9 genome editing technology significantly accelerated herpes simplex virus research. Cancer Genet Ther. 2018;25(5–6):93–105. doi: 10.1038/s41417-018-0016-3
  • Maggio I, Zittersteijn HA, Wang Q, et al. Integrating gene delivery and gene-editing technologies by adenoviral vector transfer of optimized CRISPR-Cas9 components. Genet Ther. 2020;27(5):209–225. doi: 10.1038/s41434-019-0119-y
  • Xu A, Qin C, Lang Y, et al. A simple and rapid approach to manipulate pseudorabies virus genome by CRISPR/Cas9 system. Biotechnol Lett. 2015;37(6):1265–1272. doi: 10.1007/s10529-015-1796-2
  • Chen Y-C, Sheng J, Trang P, et al. Potential application of the CRISPR/Cas9 system against herpesvirus infections. Viruses. 2018;10(6):291. doi: 10.3390/v10060291
  • Giuliano CJ, Lin A, Girish V, et al. Generating single cell–derived knockout clones in mammalian cells with CRISPR/Cas9. Curr Protoc Mol Biol. 2019;128(1):e100. doi: 10.1002/cpmb.100
  • Gowripalan A, Smith S, Stefanovic T, et al. Rapid poxvirus engineering using CRISPR/Cas9 as a selection tool. Commun Biol. 2020;3(1):643. doi: 10.1038/s42003-020-01374-6
  • Zhang W-W, Karmakar S, Gannavaram S, et al. A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nat Commun. 2020;11(1):3461. doi: 10.1038/s41467-020-17154-z
  • Wu W, Orr-Burks N, Karpilow J, et al. Development of improved vaccine cell lines against rotavirus. Sci Data. 2017;4(1):170021. doi: 10.1038/sdata.2017.21
  • Sanden S, Wu W, Dybdahl-Sissoko N, et al. Engineering enhanced vaccine cell lines to eradicate vaccine-preventable diseases: the polio end game. J Virol. 2016;90(4):1694–1704. doi: 10.1128/JVI.01464-15
  • Karimian A, Azizian K, Parsian H, et al. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol. 2019;234(8):12267–12277. doi: 10.1002/jcp.27972
  • Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials. 2018;171:207–218. doi: 10.1016/j.biomaterials.2018.04.031
  • Nishimasu H, Yamano T, Gao L, et al. Structural basis for the altered PAM recognition by engineered CRISPR-Cpf1. Molecular Cell. 2017;67(1):139–147.e2. doi: 10.1016/j.molcel.2017.04.019
  • Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540(7631):144–149. doi: 10.1038/nature20565
  • Segel M, Lash B, Song J, et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science. 2021;373(6557):882–889. doi: 10.1126/science.abg6155
  • Bi Y, Hua Z, Liu X, et al. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep. 2016;6(1):31729. doi: 10.1038/srep31729
  • Wang L, Schultz PG. Expanding the genetic code. Angewandte Chemie. 2005;44(1):34–66. doi: 10.1002/anie.200460627
  • Xie J, Schultz PG. A chemical toolkit for proteins—an expanded genetic code. Nat Rev Mol Cell Biol. 2006;7(10):775–782. doi: 10.1038/nrm2005
  • Davis L, Chin JW. Designer proteins: applications of genetic code expansion in cell biology. Nat Rev Mol Cell Biol. 2012;13(3):168–182. doi: 10.1038/nrm3286
  • Koehler C, Sauter PF, Wawryszyn M, et al. Genetic code expansion for multiprotein complex engineering. Nat Methods. 2016;13(12):997–1000. doi: 10.1038/nmeth.4032
  • Chin JW. Expanding and reprogramming the genetic code. Nature. 2017;550(7674):53–60. doi: 10.1038/nature24031
  • Si L, Xu H, Zhou X, et al. Generation of influenza a viruses as live but replication-incompetent virus vaccines. Science. 2016;354(6316):1170–1173. doi: 10.1126/science.aah5869
  • Wang N, Li Y, Niu W, et al. Construction of a live-attenuated HIV-1 vaccine through genetic code expansion. Angewandte Chemie. 2014;53(19):4867–4871. doi: 10.1002/anie.201402092
  • Wang T-Y, Sang G-J, Wang Q, et al. Generation of premature termination codon (PTC)-harboring pseudorabies virus (PRV) via genetic code expansion technology. Viruses. 2022;14(3):572. doi: 10.3390/v14030572
  • Zhang RR, Ye Q, Li XF, et al. Construction and characterization of UAA-controlled recombinant Zika virus by genetic code expansion. Sci China Life Sci. 2021 Jan;64(1):171–173.
  • Fok JA, Mayer C. Genetic-code-expansion strategies for vaccine development. Chembiochem. 2020;21(23):3291–3300. doi: 10.1002/cbic.202000343
  • Shandell MA, Tan Z, Cornish VW. Genetic code expansion: a brief history and perspective. Biochemistry. 2021;60(46):3455–3469. doi: 10.1021/acs.biochem.1c00286
  • Quax TE, Claassens NJ, Söll D, et al. Codon bias as a means to fine-tune gene expression. Molecular Cell. 2015;59(2):149–161. doi: 10.1016/j.molcel.2015.05.035
  • Broadbent AJ, Santos CP, Anafu A, et al. Evaluation of the attenuation, immunogenicity, and efficacy of a live virus vaccine generated by codon-pair bias de-optimization of the 2009 pandemic H1N1 influenza virus, in ferrets. Vaccine. 2016;34(4):563–570. doi: 10.1016/j.vaccine.2015.11.054
  • Groenke N, Trimpert J, Merz S, et al. Mechanism of virus attenuation by codon pair deoptimization. Cell Rep. 2020;31(4):107586. doi: 10.1016/j.celrep.2020.107586
  • Konopka-Anstadt JL, Campagnoli R, Vincent A, et al. Development of a new oral poliovirus vaccine for the eradication end game using codon deoptimization. NPJ Vaccines. 2020;5(1):26. doi: 10.1038/s41541-020-0176-7
  • Coleman JR, Papamichail D, Skiena S, et al. Virus attenuation by genome-scale changes in codon pair bias. Science. 2008;320(5884):1784–1787. doi: 10.1126/science.1155761
  • Mueller S, Coleman JR, Papamichail D, et al. Live attenuated influenza virus vaccines by computer-aided rational design. Nat Biotechnol. 2010;28(7):723–726. doi: 10.1038/nbt.1636
  • Le Nouën C, Brock LG, Luongo C, et al. Attenuation of human respiratory syncytial virus by genome-scale codon-pair deoptimization. Proc Nat Acad Sci. 2014;111(36):13169–13174. doi: 10.1073/pnas.1411290111
  • Jordan-Paiz A, Franco S, Martinez MA. Synonymous codon pair recoding of the HIV-1 env gene affects virus replication capacity. Cells. 2021;10(7):1636. doi: 10.3390/cells10071636
  • Li P, Ke X, Wang T, et al. Zika virus attenuation by codon pair deoptimization induces sterilizing immunity in mouse models. J Virol. 2018;92(17):e00701–18. doi: 10.1128/JVI.00701-18
  • Nouën CL, Luongo CL, Yang L, et al. Optimization of the codon pair usage of human respiratory syncytial virus paradoxically resulted in reduced viral replication in vivo and reduced immunogenicity. J Virol. 2020;94(2):e01296–19. doi: 10.1128/JVI.01296-19
  • Zakeri B, Fierer JO, Celik E, et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A. 2012;109(12):E690–E697. doi: 10.1073/pnas.1115485109
  • Schoene C, Fierer JO, Bennett SP, et al. SpyTag/SpyCatcher cyclization confers resilience to boiling on a mesophilic enzyme. Angewandte Chemie. 2014;53(24):6101–6104. doi: 10.1002/anie.201402519
  • Ma X, Zou F, Yu F, et al. Nanoparticle vaccines based on the receptor binding domain (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity. 2020;53(6):1315–1330. e9. doi: 10.1016/j.immuni.2020.11.015
  • Cohen AA, Gnanapragasam PNP, Lee YE, et al. Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science. 2021;371(6530):735–741. doi: 10.1126/science.abf6840
  • Reddington SC, Howarth M. Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr Opin Chem Biol. 2015;29:94–99. doi: 10.1016/j.cbpa.2015.10.002
  • Paterson GK, Mitchell TJ. The biology of Gram-positive sortase enzymes. Trends Microbiol. 2004;12(2):89–95. doi: 10.1016/j.tim.2003.12.007
  • Spirig T, Weiner EM, Clubb RT. Sortase enzymes in Gram-positive bacteria. Mol Microbiol. 2011;82(5):1044–1059. doi: 10.1111/j.1365-2958.2011.07887.x
  • Obeng EM, Fulcher AJ, Wagstaff KM. Harnessing sortase a transpeptidation for advanced targeted therapeutics and vaccine engineering. Biotechnol Adv. 2023;64:108108. doi: 10.1016/j.biotechadv.2023.108108
  • Tang S, Xuan B, Ye X, et al. A modular vaccine development platform based on sortase-mediated site-specific tagging of antigens onto virus-like particles. Sci Rep. 2016;6(1):25741. doi: 10.1038/srep25741
  • Saunders KO, Lee E, Parks R, et al. Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature. 2021;594(7864):553–559. doi: 10.1038/s41586-021-03594-0
  • Xu Z, Rivera-Hernandez T, Chatterjee O, et al. Semisynthetic, self-adjuvanting vaccine development: efficient, site-specific sortase A-mediated conjugation of Toll-like receptor 2 ligand FSL-1 to recombinant protein antigens under native conditions and application to a model group a streptococcal vaccine. JControlled Release. 2020;317:96–108. doi: 10.1016/j.jconrel.2019.11.018
  • Duarte JN, Cragnolini JJ, Swee LK, et al. Generation of immunity against pathogens via single-domain antibody–antigen constructs. J Immunol. 2016;197(12):4838–4847. doi: 10.4049/jimmunol.1600692
  • Morgan HE, Turnbull WB, Webb ME. Challenges in the use of sortase and other peptide ligases for site-specific protein modification. Chem Soc Rev. 2022;51(10):4121–4145. doi: 10.1039/D0CS01148G
  • Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21(3):181–200. doi: 10.1038/s41573-021-00371-6
  • Paiva S-L, Crews CM. Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol. 2019;50:111–119. doi: 10.1016/j.cbpa.2019.02.022
  • Si L, Shen Q, Li J, et al. Generation of a live attenuated influenza a vaccine by proteolysis targeting. Nat Biotechnol. 2022;40(9):1370–1377. doi: 10.1038/s41587-022-01381-4
  • Chatterjee P, Ponnapati M, Kramme C, et al. Targeted intracellular degradation of SARS-CoV-2 via computationally optimized peptide fusions. Commun Biol. 2020;3(1):715. doi: 10.1038/s42003-020-01470-7
  • Li K, Crews CM. Protacs: past, present and future. Chem Soc Rev. 2022;51(12):5214–5236. doi: 10.1039/D2CS00193D
  • Gadd MS, Testa A, Lucas X, et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol. 2017;13(5):514–521. doi: 10.1038/nchembio.2329
  • Ahmad H, Zia B, Husain H, et al. Recent advances in PROTAC-based antiviral strategies. Vaccines. 2023;11(2):270. doi: 10.3390/vaccines11020270
  • Zeng S, Huang W, Zheng X, et al. Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: recent progress and future challenges. Eur J Med Chem. 2021;210:112981. doi: 10.1016/j.ejmech.2020.112981
  • Gao H, Sun X, Rao Y. PROTAC Technology: opportunities and challenges. ACS Med Chem Lett. 2020;11(3):237–240. doi: 10.1021/acsmedchemlett.9b00597
  • Gainza-Cirauqui P, Correia BE. Computational protein design—the next generation tool to expand synthetic biology applications. Curr Opin Biotechnol. 2018;52:145–152. doi: 10.1016/j.copbio.2018.04.001
  • Bale JB, Gonen S, Liu Y, et al. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science. 2016;353(6297):389–394. doi: 10.1126/science.aaf8818
  • Arunachalam PS, Walls AC, Golden N, et al. Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature. 2021;594(7862):253–258. doi: 10.1038/s41586-021-03530-2
  • Boyoglu-Barnum S, Ellis D, Gillespie RA, et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature. 2021;592(7855):623–628. doi: 10.1038/s41586-021-03365-x
  • Marcandalli J, Fiala B, Ols S, et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell. 2019;176(6):1420–1431.e17. doi: 10.1016/j.cell.2019.01.046
  • Sliepen K, Radić L, Capella-Pujol J, et al. Induction of cross-neutralizing antibodies by a permuted hepatitis C virus glycoprotein nanoparticle vaccine candidate. Nat Commun. 2022;13(1):7271. doi: 10.1038/s41467-022-34961-8
  • Kay E, Cuccui J, Wren BW. Recent advances in the production of recombinant glycoconjugate vaccines. NPJ Vaccines. 2019;4(1):16. doi: 10.1038/s41541-019-0110-z
  • Perrett KP, Nolan TM, McVernon J. A licensed combined haemophilus influenzae type b-serogroups C and Y meningococcal conjugate vaccine. Infect Dis Ther. 2013;2(1):1–13. doi: 10.1007/s40121-013-0007-5
  • McCarthy PC, Sharyan A, Sheikhi Moghaddam L. Meningococcal vaccines: current status and emerging strategies. Vaccines. 2018;6(1):12. doi: 10.3390/vaccines6010012
  • Grijalva CG, Nuorti JP, Arbogast PG, et al. Decline in pneumonia admissions after routine childhood immunisation with pneumococcal conjugate vaccine in the USA: a time-series analysis. Lancet. 2007;369(9568):1179–1186. doi: 10.1016/S0140-6736(07)60564-9
  • Dow JM, Mauri M, Scott TA, et al. Improving protein glycan coupling technology (PGCT) for glycoconjugate vaccine production. Expert Rev Vaccines. 2020;19(6):507–527. doi: 10.1080/14760584.2020.1775077
  • Berti F, Micoli F. Improving efficacy of glycoconjugate vaccines: from chemical conjugates to next generation constructs. Curr Opin Immunol. 2020;65:42–49. doi: 10.1016/j.coi.2020.03.015
  • Reglinski M, Ercoli G, Plumptre C, et al. A recombinant conjugated pneumococcal vaccine that protects against murine infections with a similar efficacy to Prevnar-13. NPJ Vaccines. 2018;3(1):53. doi: 10.1038/s41541-018-0090-4
  • Hatz CFR, Bally B, Rohrer S, et al. Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella dysenteriae type 1 administered to healthy adults: a single blind, partially randomized Phase I study. Vaccine. 2015;33(36):4594–4601. doi: 10.1016/j.vaccine.2015.06.102
  • Riddle MS, Kaminski RW, Paolo CD, et al. Safety and immunogenicity of a candidate bioconjugate vaccine against shigella flexneri 2a administered to healthy adults: a single-blind, randomized phase I study. Clin Vaccin Immunol. 2016;23(12):908–917. doi: 10.1128/CVI.00224-16
  • Huttner A, Hatz C, van den Dobbelsteen G, et al. Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. Lancet Infect Dis. 2017;17(5):528–537. doi: 10.1016/S1473-3099(17)30108-1
  • Napiórkowska M, Boilevin J, Darbre T, et al. Structure of bacterial oligosaccharyltransferase PglB bound to a reactive LLO and an inhibitory peptide. Sci Rep. 2018;8(1):16297. doi: 10.1038/s41598-018-34534-0
  • Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedchem. 2013;8(3):360–376. doi: 10.1002/cmdc.201200487
  • Yang S, Li Y, Dai L, et al. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis. 2021;21(8):1107–1119. doi: 10.1016/S1473-3099(21)00127-4
  • Dagnew AF, Ilhan O, Lee W-S, et al. Immunogenicity and safety of the adjuvanted recombinant zoster vaccine in adults with haematological malignancies: a phase 3, randomised, clinical trial and post-hoc efficacy analysis. Lancet Infect Dis. 2019;19(9):988–1000. doi: 10.1016/S1473-3099(19)30163-X
  • Li Z, Song S, He M, et al. Rational design of a triple-type human papillomavirus vaccine by compromising viral-type specificity. Nat Commun. 2018;9(1):5360. doi: 10.1038/s41467-018-07199-6
  • Vartak A, Sucheck SJ. Recent advances in subunit vaccine carriers. Vaccines. 2016;4(2):12. doi: 10.3390/vaccines4020012
  • Perrie Y, Mohammed AR, Kirby DJ, et al. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharmaceut. 2008;364(2):272–280. doi: 10.1016/j.ijpharm.2008.04.036
  • Tandrup Schmidt S, Foged C, Smith Korsholm K, et al. Liposome-based adjuvants for subunit vaccines: formulation strategies for subunit antigens and immunostimulators. Pharmaceutics. 2016;8(1):7. doi: 10.3390/pharmaceutics8010007
  • Tomljenovic L, Shaw CA. Aluminum vaccine adjuvants: are they safe? Curr Med Chem. 2011;18(17):2630–2637. doi: 10.2174/092986711795933740
  • Aimanianda V, Haensler J, Lacroix-Desmazes S, et al. Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants. Trends Pharmacol Sci. 2009;30(6):287–295. doi: 10.1016/j.tips.2009.03.005
  • Laurens MB. RTS,S/AS01 vaccine (Mosquirix™): an overview. Human Vaccines & Immunotherapeutics. 2020 Mar 3;16(3):480–489. doi: 10.1080/21645515.2019.1669415
  • Didierlaurent AM, Laupèze B, Di Pasquale A, et al. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines. 2017 Jan;16(1):55–63.
  • Maltz F, Fidler B. Shingrix: a new herpes zoster vaccine. P T. 2019;44(7):406–433.
  • Dunkle LM, Kotloff KL, Gay CL, et al. Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. N Engl J Med. 2021;386(6):531–543. doi: 10.1056/NEJMoa2116185
  • Coler RN, Day TA, Ellis R, et al. The TLR-4 agonist adjuvant, GLA-SE, improves magnitude and quality of immune responses elicited by the ID93 tuberculosis vaccine: first-in-human trial. NPJ Vaccines. 2018;3(1):34.
  • Pulendran B, Arunachalam PS, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20(6):454–475. doi: 10.1038/s41573-021-00163-y
  • Hesse EM, Shimabukuro TT, Su JR, et al. Postlicensure safety surveillance of recombinant zoster vaccine (Shingrix) - United States, October 2017-June 2018. MMWR Morb Mortal Wkly Rep. 2019 Feb 1;68(4):91–94. doi: 10.15585/mmwr.mm6804a4
  • Miller ER, Lewis P, Shimabukuro TT, et al. Post-licensure safety surveillance of zoster vaccine live (Zostavax®) in the United States, Vaccine Adverse Event Reporting System (VAERS), 2006–2015. Human Vaccines Immunother. 2018;14(8):1963–1969. doi: 10.1080/21645515.2018.1456598
  • Shi S, Zhu H, Xia X, et al. Vaccine adjuvants: understanding the structure and mechanism of adjuvanticity. Vaccine. 2019;37(24):3167–3178. doi: 10.1016/j.vaccine.2019.04.055
  • Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–358. doi: 10.1038/nrg1066
  • Travieso T, Li J, Mahesh S, et al. The use of viral vectors in vaccine development. NPJ Vaccines. 2022;7(1):75. doi: 10.1038/s41541-022-00503-y
  • Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines. 2014;2(3):624–641. doi: 10.3390/vaccines2030624
  • Robert-Guroff M. Replicating and non-replicating viral vectors for vaccine development. Curr Opin Biotechnol. 2007;18(6):546–556. doi: 10.1016/j.copbio.2007.10.010
  • Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021 Jan 9;397(10269):99–111. doi: 10.1016/S0140-6736(20)32661-1
  • Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med. 2021;384(23):2187–2201. doi: 10.1056/NEJMoa2101544
  • Jones I, Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet. 2021;397(10275):642–643. doi: 10.1016/S0140-6736(21)00191-4
  • Kamel M, El-Sayed A. Utilization of herpesviridae as recombinant viral vectors in vaccine development against animal pathogens. Virus res. 2019;270:197648. doi: 10.1016/j.virusres.2019.197648
  • Chen J, Wang P, Yuan L, et al. A live attenuated virus-based intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2. Sci Bull. 2022;67(13):1372–1387.
  • Tomori O, Kolawole MO. Ebola virus disease: current vaccine solutions. Curr Opin Immunol. 2021;71:27–33. doi: 10.1016/j.coi.2021.03.008
  • Jain KK. An overview of drug delivery systems. In: Jain K, editor. Drug delivery systems. New York (NY): Springer New York; 2020. p. 1–54. doi: 10.1007/978-1-4939-9798-5_1.
  • Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi: 10.1038/s41573-020-0090-8
  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–2615. doi: 10.1056/NEJMoa2034577
  • Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–416. doi: 10.1056/NEJMoa2035389
  • McClements DJ. Edible lipid nanoparticles: digestion, absorption, and potential toxicity. Progress Lipid Res. 2013;52(4):409–423. doi: 10.1016/j.plipres.2013.04.008
  • Moghimi SM. Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines. Mol Ther. 2021;29(3):898–900. doi: 10.1016/j.ymthe.2021.01.030
  • Derakhshankhah H, Jafari S. Cell penetrating peptides: a concise review with emphasis on biomedical applications. Biomed Pharmacother. 2018;108:1090–1096. doi: 10.1016/j.biopha.2018.09.097
  • Yang J, Luo Y, Shibu MA, et al. Cell-penetrating peptides: efficient vectors for vaccine delivery. Curr Drug Deliv. 2019;16(5):430–443. doi: 10.2174/1567201816666190123120915
  • Skwarczynski M, Toth I. Cell-penetrating peptides in vaccine delivery: facts, challenges and perspectives. Ther Deliv. 2019;10(8):465–467. doi: 10.4155/tde-2019-0042
  • Backlund CM, Holden RL, Moynihan KD, et al. Cell-penetrating peptides enhance peptide vaccine accumulation and persistence in lymph nodes to drive immunogenicity. Proc Nat Acad Sci. 2022;119(32):e2204078119. doi: 10.1073/pnas.2204078119
  • Yu S, Yang H, Li T, et al. Efficient intracellular delivery of proteins by a multifunctional chimaeric peptide in vitro and in vivo. Nat Commun. 2021;12(1):5131. doi: 10.1038/s41467-021-25448-z
  • Garg U, Chauhan S, Nagaich U, et al. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull. 2019 Jun;9(2):195–204.
  • Pawar D, Jaganathan K. Mucoadhesive glycol chitosan nanoparticles for intranasal delivery of hepatitis B vaccine: enhancement of mucosal and systemic immune response. Drug Delivery. 2016;23(1):185–194. doi: 10.3109/10717544.2014.908427
  • van der Maaden K, Sekerdag E, Schipper P, et al. Layer-by-layer assembly of inactivated poliovirus and N-Trimethyl chitosan on Ph-sensitive microneedles for dermal vaccination. Langmuir. 2015;31(31):8654–8660. doi: 10.1021/acs.langmuir.5b01262
  • Hu Z, Chen J, Zhou S, et al. Mouse IP-10 gene delivered by folate-modified chitosan nanoparticles and dendritic/tumor cells fusion vaccine effectively inhibit the growth of hepatocellular carcinoma in mice. Theranostics. 2017;7(7):1942–1952. doi: 10.7150/thno.16236
  • Jiang T, Singh B, Li H-S, et al. Targeted oral delivery of BmpB vaccine using porous PLGA microparticles coated with M cell homing peptide-coupled chitosan. Biomaterials. 2014;35(7):2365–2373. doi: 10.1016/j.biomaterials.2013.11.073
  • Xu B, Zhang W, Chen Y, et al. Eudragit® L100-coated mannosylated chitosan nanoparticles for oral protein vaccine delivery. Int j biol macromol. 2018;113:534–542. doi: 10.1016/j.ijbiomac.2018.02.016
  • Joyce MG, Chen W-H, Sankhala RS, et al. SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity. Cell Rep. 2021;37(12):110143. doi: 10.1016/j.celrep.2021.110143
  • Hong X, Zhong X, Du G, et al. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency. Sci Adv. 2020;6(25):eaaz4462. doi: 10.1126/sciadv.aaz4462
  • Freyn AW, Ramos da Silva J, Rosado VC, et al. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice. Mol Ther. 2020;28(7):1569–1584. doi: 10.1016/j.ymthe.2020.04.018
  • Lederer K, Castaño D, Atria DG, et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation. Immunity. 2020;53(6):1281–1295. e5. doi: 10.1016/j.immuni.2020.11.009
  • Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med. 2020;383(20):1920–1931. doi: 10.1056/NEJMoa2022483
  • Walsh EE, Frenck RW Jr, Falsey AR, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med. 2020;383(25):2439–2450. doi: 10.1056/NEJMoa2027906
  • Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Delivery. 2012;9:497–508. doi: 10.1517/17425247.2012.673278
  • Maruggi G, Zhang C, Li J, et al. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther. 2019;27(4):757–772. doi: 10.1016/j.ymthe.2019.01.020
  • Chahal JS, Khan OF, Cooper CL, et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc Nat Acad Sci. 2016;113(29):E4133–E4142. doi: 10.1073/pnas.1600299113
  • Ahmad TA, Eweida AE, Sheweita SA. B-cell epitope mapping for the design of vaccines and effective diagnostics. Trials Vaccinol. 2016;5:71–83. doi: 10.1016/j.trivac.2016.04.003
  • Malonis RJ, Lai JR, Vergnolle O. Peptide-based vaccines: current progress and future challenges. Chem Rev. 2019;120(6):3210–3229. doi: 10.1021/acs.chemrev.9b00472
  • He R, Yang X, Liu C, et al. Efficient control of chronic LCMV infection by a CD4 T cell epitope-based heterologous prime-boost vaccination in a murine model. Cell Mol Immunol. 2018;15(9):815–826. doi: 10.1038/cmi.2017.3
  • Xu K, Acharya P, Kong R, et al. Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nat Med. 2018;24(6):857–867. doi: 10.1038/s41591-018-0042-6
  • Oyarzun P, Ellis JJ, Gonzalez-Galarza FF, et al. A bioinformatics tool for epitope-based vaccine design that accounts for human ethnic diversity: application to emerging infectious diseases. Vaccine. 2015;33(10):1267–1273. doi: 10.1016/j.vaccine.2015.01.040
  • van Doorn E, Liu H, Ben-Yedidia T, et al. Evaluating the immunogenicity and safety of a BiondVax-developed universal influenza vaccine (Multimeric-001) either as a standalone vaccine or as a primer to H5N1 influenza vaccine: phase IIb study protocol. Medicine. 2017;96(11). doi: 10.1097/MD.0000000000006339
  • Ishina IA, Zakharova MY, Kurbatskaia IN, et al. MHC class II presentation in autoimmunity. Cells. 2023;12(2):314. doi: 10.3390/cells12020314
  • Gershon AA, Breuer J, Cohen JI, et al. Varicella zoster virus infection. Nat Rev Dis Primers. 2015;1(1):1–18. doi: 10.1038/nrdp.2015.16
  • Keating GM. Shingles (Herpes Zoster) vaccine (Zostavax®): a review in the prevention of herpes zoster and postherpetic neuralgia. BioDrugs. 2016;30(3):243–254. doi: 10.1007/s40259-016-0180-7
  • James SF, Chahine EB, Sucher AJ, et al. Shingrix: the new adjuvanted recombinant herpes zoster vaccine. Ann Pharmacother. 2018;52(7):673–680. doi: 10.1177/1060028018758431
  • Plotkin S, Robinson JM, Cunningham G, et al. The complexity and cost of vaccine manufacturing – an overview. Vaccine. 2017;35(33):4064–4071. doi: 10.1016/j.vaccine.2017.06.003
  • Loayza N. Costs and trade-offs in the fight against the COVID-19 pandemic: a developing country perspective. World Bank Res Policy Briefs. 2020;35:148535.
  • Thornton JM, Laskowski RA, Borkakoti N. AlphaFold heralds a data-driven revolution in biology and medicine. Nat Med. 2021;27(10):1666–1669. doi: 10.1038/s41591-021-01533-0
  • Schoeder CT, Schmitz S, Adolf-Bryfogle J, et al. Modeling Immunity with Rosetta: methods for antibody and antigen design. Biochemistry. 2021 Mar 23;60(11):825–846. doi: 10.1021/acs.biochem.0c00912
  • Cao L, Goreshnik I, Coventry B, et al. De Novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science. 2020;370(6515):426–431. doi: 10.1126/science.abd9909
  • Cao L, Coventry B, Goreshnik I, et al. Design of protein-binding proteins from the target structure alone. Nature. 2022;605(7910):551–560. doi: 10.1038/s41586-022-04654-9