1,796
Views
0
CrossRef citations to date
0
Altmetric
Review

Single administration vaccines: delivery challenges, in vivo performance, and translational considerations

, , , , , , & show all
Pages 579-595 | Received 05 Apr 2023, Accepted 21 Jun 2023, Published online: 04 Jul 2023

References

  • McHugh KJ, Guarecuco R, Langer R, et al. Single-injection vaccines: progress, challenges, and opportunities. J Control Release. 2015 Dec 10;219:596–609.
  • Riddell NE. Immune responses: primary and secondary. Ency Of Life Sci. 2020; 1(2):316–326. doi: 10.1002/9780470015902.a0029196
  • Immunization coverage by antigen (country, regional, and global trends) [Internet]. UNICEF Data. 2020 [cited 2021 Mar 6]. Available from: https://data.unicef.org/resources/dataset/immunization/#.
  • Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: from basics to clinical immunization. J Control Release. 2019 Jun 10;303:130–150. doi: 10.1016/j.jconrel.2019.04.025
  • Vora LK, Moffatt K, Donnelly RF. 9 - Long-lasting drug delivery systems based on microneedles. In: Larrañeta E, Raghu Raj Singh T Donnelly R, editors. Long-acting drug delivery systems. Woodhead Publishing; 2022. p. 249–287. doi: 10.1016/B978-0-12-821749-8.00010-0
  • Gregory A, Williamson D, Titball R. Vaccine delivery using nanoparticles [Review]. Front Cell Infect Microbiol. 2013 [2013 Mar 25];3:3. doi: 10.3389/fcimb.2013.00013
  • Parent M, Nouvel C, Koerber M, et al. PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. J Control Release. 2013 Nov 28;172(1):292–304. doi: 10.1016/j.jconrel.2013.08.024
  • Jain A, Kunduru KR, Basu A, et al. Injectable formulations of poly(lactic acid) and its copolymers in clinical use. Adv Drug Deliv Rev. 2016 Dec 15;107:213–227.
  • Genito CJ, Batty CJ, Bachelder EM, et al. Considerations for size, surface charge, polymer degradation, co-delivery, and manufacturability in the development of polymeric particle vaccines for infectious diseases. Adv NanoBiomed Res. 2021 Jan 18;1(3):2000041.
  • Johansen P, Martinez Gomez JM, Gander B. Development of synthetic biodegradable microparticulate vaccines: a roller coaster story. Expert Rev Vaccines. 2007 Aug;6(4):471–474. doi: 10.1586/14760584.6.4.471
  • van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res. 2000 Oct;17(10):1159–1167. doi: 10.1023/A:1026498209874
  • Chatzilena A, Hyams C, Challen R, et al. Effectiveness of BNT162b2 COVID-19 vaccination in prevention of hospitalisations and severe disease in adults with SARS-CoV-2 Delta (B.1.617.2) and Omicron (B.1.1.529) variant between June 2021 and July 2022: a prospective test negative case–control study. The Lancet Regional Health - Europe. 2023 [2023 Feb 1];25:100552.
  • Cianci R, Franza L, Pignataro G, et al. Effect of COVID-19 vaccination on the in-hospital prognosis of patients admitted during delta and omicron Waves in Italy. Vaccines (Basel). 2023 Feb 6;11(2):373.
  • Gram MA, Emborg HD, Schelde AB, et al. Vaccine effectiveness against SARS-CoV-2 infection or COVID-19 hospitalization with the Alpha, Delta, or Omicron SARS-CoV-2 variant: a nationwide Danish cohort study. PLOS Med. 2022 Sep;19(9):e1003992.
  • Gale EC, Powell AE, Roth GA, et al. Hydrogel-based slow release of a receptor-binding domain subunit vaccine elicits neutralizing antibody responses against SARS-CoV-2. Adv Mater. 2021;33(51):2104362. doi: 10.1002/adma.202104362
  • Manivannan R, Dhanaraj SA, Rao YU, et al. In vivo evaluation of single dose tetanus toxoid vaccine formulation with chitosan microspheres. Indian J Pharm Sci. 2008 Jan;70(1):11–15.
  • Kim JK, Kim HJ, Chung JY, et al. Natural and synthetic biomaterials for controlled drug delivery. Arch Pharm Res. 2014 Jan;37(1):60–68.
  • Bartnikowski M, Dargaville TR, Ivanovski S, et al. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress Polym Sci. 2019 [2019 Sep 1];96:1–20.
  • Bansal V, Kumar M, Bhardwaj A, et al. In vivo efficacy and toxicity evaluation of polycaprolactone nanoparticles and aluminum based admixture formulation as vaccine delivery system. Vaccine. 2015 Oct 13;33(42):5623–5632.
  • Tomar P, Karwasara VS, Dixit VK. Development characterizations and evaluation of Poly(-epsilon-caprolactone)-based microspheres for hepatitis B surface antigen delivery. Pharm Dev Technol. 2011 Oct;16(5):489–496. doi: 10.3109/10837450.2010.492220
  • Gonella A, Grizot S, Liu F, et al. Long-acting injectable formulation technologies: challenges and opportunities for the delivery of fragile molecules. Expert Opin Drug Deliv. 2022 Aug;19(8):927–944.
  • Zhang C, Yang L, Wan F, et al. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int J Pharm. 2020 Jul 30;585:119441.
  • Lee PW, Pokorski JK. Poly(lactic-co-glycolic acid) devices: production and applications for sustained protein delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 Sep;10(5):e1516. doi: 10.1002/wnan.1516
  • Fredenberg S, Wahlgren M, Reslow M, et al. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review. Int J Pharm. 2011 Aug 30;415(1–2):34–52.
  • Schwendeman SP, Shah RB, Bailey BA, et al. Injectable controlled release depots for large molecules. J Control Release. 2014 Sep 28;190:240–253.
  • Boehm G, Peyre M, Sesardic D, et al. On technological and immunological benefits of multivalent single-injection microsphere vaccines. Pharm Res. 2002 Sep;19(9):1330–1336.
  • Yoo J, Won YY. Phenomenology of the initial burst release of drugs from PLGA microparticles. ACS Biomater Sci Eng. 2020 Nov 9;6(11):6053–6062.
  • Lin X, Yang H, Su L, et al. Effect of size on the in vitro/in vivo drug release and degradation of exenatide-loaded PLGA microspheres. J Drug Delivery Sci Technol. 2018 [2018 Jun 1];45:346–356.
  • Uchida T, Goto S, Foster TP. Particle size studies for subcutaneous delivery of poly(lactide-co-glycolide) microspheres containing ovalbumin as vaccine formulation. J Pharm Pharmacol. 1995 Jul;47(7):556–560. doi: 10.1111/j.2042-7158.1995.tb06713.x
  • Dunne M, Corrigan I, Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials. 2000 Aug;21(16):1659–1668. doi: 10.1016/S0142-9612(00)00040-5
  • Boimvaser S, Mariano RN, Turino LN, et al. In vitro bulk/surface erosion pattern of PLGA implant in physiological conditions: a study based on auxiliary microsphere systems. Polym Bull. 2016 [2016 Jan 1];73(1):209–227. doi: 10.1007/s00289-015-1481-6
  • Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011 Sep 1;3(3):1377–1397.
  • Guarecuco R, Lu J, McHugh KJ, et al. Immunogenicity of pulsatile-release PLGA microspheres for single-injection vaccination. Vaccine. 2018 May 24;36(22):3161–3168.
  • Wan F, Maltesen MJ, Andersen SK, et al. Modulating protein release profiles by incorporating hyaluronic acid into PLGA microparticles via a spray dryer equipped with a 3-fluid nozzle. Pharm Res. 2014 Nov;31(11):2940–2951.
  • Fredenberg S, Wahlgren M, Reslow M, et al. Pore formation and pore closure in poly(D,L-lactide-co-glycolide) films. J Control Release. 2011 Mar 10;150(2):142–149.
  • Tracy MA, Ward KL, Firouzabadian L, et al. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials. 1999 Jun;20(11):1057–1062.
  • Siegel SJ, Kahn JB, Metzger K, et al. Effect of drug type on the degradation rate of PLGA matrices. Eur J Pharm Biopharm. 2006 Nov;64(3):287–293.
  • Frank A, Rath SK, Venkatraman SS. Controlled release from bioerodible polymers: effect of drug type and polymer composition. J Control Release. 2005 Feb 2;102(2):333–344.
  • Jaganathan KS, Singh P, Prabakaran D, et al. Development of a single-dose stabilized poly(D,L-lactic-co-glycolic acid) microspheres-based vaccine against hepatitis B. J Pharm Pharmacol. 2004 Oct;56(10):1243–1250.
  • Zhao X, Zhang S, Yang G, et al. Exploring trehalose on the release of levonorgestrel from implantable PLGA microneedles. Polymers. 2020 Jan 1;12(1):59.
  • Knab TD, Little SR, Parker RS. A systems approach to modeling drug release from polymer microspheres to accelerate in vitro to in vivo translation. J Control Release. 2015 Aug 10;211:74–84. doi: 10.1016/j.jconrel.2015.04.045
  • Grayson AC, Voskerician G, Lynn A, et al. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip. J Biomater Sci Polym Ed. 2004;15(10):1281–1304. doi: 10.1163/1568562041959991
  • Reis RL, San Román J, editors. Biodegradable Systems in Tissue Engineering and Regenerative Medicine. 2004; 177–202. doi: 10.1201/9780203491232.ch12
  • Doty AC, Weinstein DG, Hirota K, et al. Mechanisms of in vivo release of triamcinolone acetonide from PLGA microspheres. J Control Release. 2017 Jun 28;256:19–25.
  • Hirota K, Doty AC, Ackermann R, et al. Characterizing release mechanisms of leuprolide acetate-loaded PLGA microspheres for IVIVC development I: in vitro evaluation. J Control Release. 2016 Dec 28;244(Pt B):302–313.
  • Boopathy AV, Mandal A, Kulp DW, et al. Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16473–16478.
  • Pauthner M, Havenar-Daughton C, Sok D, et al. Elicitation of robust tier 2 neutralizing antibody responses in nonhuman primates by HIV envelope trimer immunization using optimized approaches. Immunity. 2017 Jun 20;46(6):1073–1088.e6.
  • Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedchem. 2013 Mar;8(3):360–376. doi: 10.1002/cmdc.201200487
  • Hajavi J, Ebrahimian M, Sankian M, et al. Optimization of PLGA formulation containing protein or peptide-based antigen: recent advances. J Biomed Mater Res A. 2018 Sep;106(9):2540–2551.
  • Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci. 2008 Jul;97(7):2395–2404. doi: 10.1002/jps.21176
  • Ye M, Kim S, Park K. Issues in long-term protein delivery using biodegradable microparticles.JControlled Release. 2010 [2010 Sep 1];146(2):241–260. doi: 10.1016/j.jconrel.2010.05.011
  • Wu F, Jin T. Polymer-based sustained-release dosage forms for protein drugs, challenges, and recent advances. AAPS Pharm Sci Tech. 2008;9(4):1218–1229. doi: 10.1208/s12249-008-9148-3
  • Zhu G, Mallery SR, Schwendeman SP. Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nat Biotechnol. 2000 Jan;18(1):52–57. doi: 10.1038/71916
  • Chang LL, Pikal MJ. Mechanisms of protein stabilization in the solid state. J Pharm Sci. 2009 Sep;98(9):2886–2908. doi: 10.1002/jps.21825
  • Kanojia G, Have RT, Soema PC, et al. Developments in the formulation and delivery of spray dried vaccines. Hum Vaccin Immunother. 2017 Oct 3;13(10):2364–2378.
  • Ohtake S, Kita Y, Arakawa T. Interactions of formulation excipients with proteins in solution and in the dried state. Adv Drug Deliv Rev. 2011 Oct;63(13):1053–1073. doi: 10.1016/j.addr.2011.06.011
  • Johansen P, Estevez F, Zurbriggen R, et al. Towards clinical testing of a single-administration tetanus vaccine based on PLA/PLGA microspheres. Vaccine. 2000 Dec 8;19(9–10):1047–1054.
  • Tzeng SY, Guarecuco R, McHugh KJ, et al. Thermostabilization of inactivated polio vaccine in PLGA-based microspheres for pulsatile release. J Control Release. 2016 Jul 10;233:101–113.
  • Tzeng SY, McHugh KJ, Behrens AM, et al. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response. Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):E5269–E5278.
  • McHugh KJ, Nguyen TD, Linehan AR, et al. Fabrication of fillable microparticles and other complex 3D microstructures. Science. 2017 Sep 15;357(6356):1138–1142.
  • Garcea RL, Meinerz NM, Dong M, et al. Single-administration, thermostable human papillomavirus vaccines prepared with atomic layer deposition technology. NPJ Vaccines. 2020;5(1):45. doi: 10.1038/s41541-020-0195-4
  • Das S, Ramakrishnan K, Behera SK, et al. Hepatitis B Vaccine and Immunoglobulin: key Concepts. J Clin Transl Hepatol. 2019 Jun 28;7(2):165–171.
  • Jack AD, Hall AJ, Maine N, et al. What level of hepatitis B antibody is protective? J Infect Dis. 1999 Feb;179(2):489–492.
  • Chen DS. Hepatitis B vaccination: the key towards elimination and eradication of hepatitis B. J Hepatol. 2009 Apr;50(4):805–816. doi: 10.1016/j.jhep.2009.01.002
  • WHO. Immunization coverage: wHO; 2020 [cited 2021 Jan 1]. Available from: https://www.who.int/news-room/fact-sheets/detail/immunization-coverage
  • Zhao H, Zhou X, Zhou Y-H. Hepatitis B vaccine development and implementation.Human Vaccines Immunother. 2020 [2020 Jul 2];16(7):1533–1544. doi: 10.1080/21645515.2020.1732166
  • Marshall GS, Happe LE, Lunacsek OE, et al. Use of combination vaccines is associated with improved coverage rates. Pediatr Infect Dis J. 2007 Jun;26(6):496–500.
  • Feng L, Qi XR, Zhou XJ, et al. Pharmaceutical and immunological evaluation of a single-dose hepatitis B vaccine using PLGA microspheres. J Control Release. 2006 May 1;112(1):35–42.
  • Singh M, Li XM, McGee JP, et al. Controlled release microparticles as a single dose hepatitis B vaccine: evaluation of immunogenicity in mice. Vaccine. 1997 Apr;15(5):475–481.
  • Zheng X, Huang Y, Zheng C, et al. Alginate-chitosan-PLGA composite microspheres enabling single-shot hepatitis B vaccination. Aaps J. 2010 Dec;12(4):519–524.
  • Kanchan V, Panda AK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials. 2007 Dec;28(35):5344–5357. doi: 10.1016/j.biomaterials.2007.08.015
  • Saini V, Jain V, Sudheesh MS, et al. Comparison of humoral and cell-mediated immune responses to cationic PLGA microspheres containing recombinant hepatitis B antigen. Int J Pharm. 2011 Apr 15;408(1–2):50–57.
  • Elmowafy EM, Tiboni M, Soliman ME. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles.J Pharm Invest. 2019 [2019 Jul 1];49(4):347–380. doi: 10.1007/s40005-019-00439-x
  • Silva AL, Soema PC, Slutter B, et al. PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Hum Vaccin Immunother. 2016 Apr 2;12(4):1056–1069.
  • Demento SL, Cui W, Criscione JM, et al. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials. 2012 Jun;33(19):4957–4964.
  • Elamanchili P, Lutsiak CM, Hamdy S, et al. “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J Immunother. 2007 May;30(4):378–395.
  • Dixon FJ, Mauer PH. Immunologic unresponsiveness induced by protein antigens. J Exp Med. 1955 Mar 1;101(3):245–257.
  • Crowle AJ. Immunologic Unresponsiveness to Protein Antigens Induced in Adult Hypersensitive Mice. J Allergy. 1963 Nov;34(6):504–519. doi: 10.1016/0021-8707(63)90092-3
  • Lofthouse S. Immunological aspects of controlled antigen delivery. Adv Drug Deliv Rev. 2002 Oct 4;54(6):863–870.
  • Plotkin SA, Orenstein WA, Offit PA. Plotkin’s vaccines. 7th ed ed. Philadelphia: Elsevier; 2018.
  • Mateen FJ, Shinohara RT, Sutter RW. Oral and inactivated poliovirus vaccines in the newborn: a review. Vaccine. 2013 May 17;31(21):2517–2524.
  • Estivariz CF, Pallansch MA, Anand A, et al. Poliovirus vaccination options for achieving eradication and securing the endgame. Curr Opin Virol. 2013 Jun;3(3):309–315.
  • Anand A, Pallansch MA, Estivariz CF, et al. Estimating the likely coverage of inactivated poliovirus vaccine in routine immunization: evidence from demographic and health surveys. Journal Of Infectious Diseases. 2014 Nov 1;210 Suppl 1(suppl 1):S465–74.
  • Grassly NC. Immunogenicity and effectiveness of routine immunization with 1 or 2 doses of inactivated poliovirus vaccine: systematic review and meta-analysis. The Journal Of Infectious Diseases. 2014 Nov 1;210 Suppl 1(suppl_1):S439–46.
  • Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol. 2010 Jul;17(7):1055–1065. doi: 10.1128/CVI.00131-10
  • Herve C, Laupeze B, Del Giudice G, et al. The how’s and what’s of vaccine reactogenicity. NPJ Vaccines. 2019;4(1):39. doi: 10.1038/s41541-019-0132-6
  • Di Pasquale A, Bonanni P, Garcon N, et al. Vaccine safety evaluation: practical aspects in assessing benefits and risks. Vaccine. 2016 Dec 20;34(52):6672–6680.
  • Zuckerman JN. The importance of injecting vaccines into muscle. Different patients need different needle sizes. BMJ. 2000 Nov 18;321(7271):1237–1238. doi: 10.1136/bmj.321.7271.1237
  • Sechi A, Patrizi A, Vincenzi C, et al. Sonographic features of vaccination granulomas in children with delayed-type hypersensitivity to aluminum. Pediatr Dermatol. 2019 Nov;36(6):1012–1016.
  • Petrovsky N. Comparative safety of vaccine adjuvants: a summary of current evidence and future needs. Drug Saf. 2015 Nov;38(11):1059–1074. doi: 10.1007/s40264-015-0350-4
  • Sivakumar SM, Sukumaran N, Nirmala L, et al. Immunopotentiation of hepatitis B vaccine using biodegradable polymers as an adjuvant. J Microbiol Immunol Infect. 2010 Aug;43(4):265–270.
  • Heaton PM. Challenges of developing novel vaccines with particular Ggobal health importance. Front Immunol. 2020;11:517290. doi: 10.3389/fimmu.2020.517290
  • European Medicines Agency. ICH guideline Q8 (R2) on Pharmaceutical development, ICH Harmonized Tripartite Guidelines. Location. 2009. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-11.pdf
  • WHO. Guidelines on procedures and data requirements for changes to approved vaccines. WHO Expert Committee on Biological Standardization: sixty-fifth report. Geneva: World Health Organization. 2014.
  • Sosnik A, Seremeta KP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interface Sci. 2015 Sep;223:40–54. doi: 10.1016/j.cis.2015.05.003
  • Hsiao WK, Lorber B, Reitsamer H, et al. 3D printing of oral drugs: a new reality or hype? Expert Opin Drug Deliv. 2018 Jan;15(1):1–4.
  • Webb C, Forbes N, Roces CB, et al. Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: a case study using protein-loaded liposomes. Int J Pharm. 2020 May 30;582:119266.
  • Rele S. COVID-19 vaccine development during pandemic: gap analysis, opportunities, and impact on future emerging infectious disease development strategies. Hum Vaccin Immunother. 2021 Apr 3;17(4):1122–1127.
  • Munira SL, Hendriks JT, Atmosukarto, II, et al. A cost analysis of producing vaccines in developing countries. Vaccine. 2019 Feb 21;37(9):1245–1251.
  • WHO. Pertussis vaccines: WHO 2015 [cited 2021 Jan 21]. Available from: https://www.who.int/biologicals/vaccines/pertussis/en/
  • Dean RL. The preclinical development of Medisorb® Naltrexone, a once a month long-acting injection, for the treatment of alcohol dependence. Front Biosci. 2005 Jan 1;10(1–3):643–655.
  • Tracy MA. Development and scale-up of a microsphere protein delivery system. Biotechnol Prog. 1998 Jan;14(1):108–115. doi: 10.1021/bp9701271