3,694
Views
1
CrossRef citations to date
0
Altmetric
Review

Emergence of mRNA vaccines in the management of cancer

, , , , , , , & show all
Pages 629-642 | Received 30 Jan 2023, Accepted 29 Jun 2023, Published online: 07 Jul 2023

References

  • Cancer. [cited 2023 Jun 4]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer.
  • Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021;20(1):41. doi: 10.1186/s12943-021-01335-5
  • Palumbo MO, Kavan P, Miller WH, et al. Systemic cancer therapy: achievements and challenges that lie ahead. Front Pharmacol. 2013 [cited 2023 Jun 5];4. doi: 10.3389/fphar.2013.00057
  • Duan L-J, Wang Q, Zhang C, et al. Potentialities and challenges of mRNA vaccine in cancer immunotherapy. Front Immunol. 2022;13:923647. doi: 10.3389/fimmu.2022.923647
  • Lorentzen CL, Haanen JB, Met Ö, et al. Clinical advances and ongoing trials of mRNA vaccines for cancer treatment. Lancet Oncol. 2022;23(10):e450–e458. doi: 10.1016/S1470-2045(22)00372-2
  • Karam M, Daoud G. mRNA vaccines: past, present, future. Asian J Pharm Sci. 2022;17:491–522. doi: 10.1016/j.ajps.2022.05.003.
  • Mohapatra RK, Kandi V, Sarangi AK, et al. The recently emerged BA.4 and BA.5 lineages of Omicron and their global health concerns amid the ongoing wave of COVID-19 pandemic – Correspondence. Int J Surg. 2022;103:106698. doi: 10.1016/j.ijsu.2022.106698
  • Jain S, Venkataraman A, Wechsler ME, et al. Messenger RNA-based vaccines: past, present, and future directions in the context of the COVID-19 pandemic. Adv Drug Delivery Rev. 2021;179:114000. doi: 10.1016/j.addr.2021.114000
  • Sandbrink JB, Shattock RJ. RNA vaccines: a suitable platform for tackling emerging pandemics? Front Immunol. 2020 [cited 2023 Jun 4];11. doi: 10.3389/fimmu.2020.608460
  • Geall AJ, Verma A, Otten GR, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci, USA. 2012;109(36):14604–14609. doi: 10.1073/pnas.1209367109
  • Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20:817–838. doi: 10.1038/s41573-021-00283-5.
  • Fang E, Liu X, Li M, et al. Advances in COVID-19 mRNA vaccine development. Sig Transduct Target Ther. 2022;7(1):94. doi: 10.1038/s41392-022-00950-y
  • Li S-D, Chen Y-C, Hackett MJ, et al. Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther. 2008;16(1):163–169. doi: 10.1038/sj.mt.6300323
  • Deng Z, Tian Y, Song J, et al. mRNA vaccines: the dawn of a new era of cancer immunotherapy. Front Immunol. 2022;13:887125. doi: 10.3389/fimmu.2022.887125
  • Maruggi G, Zhang C, Li J, et al. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther. 2019;27(4):757–772. doi: 10.1016/j.ymthe.2019.01.020
  • Rahman M, Zhou N, Huang J. An overview on the development of mRNA-based vaccines and their formulation strategies for improved antigen expression in vivo. Vaccines. 2021;9:244. doi: 10.3390/vaccines9030244.
  • Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines — a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–279. doi: 10.1038/nrd.2017.243
  • Tsui NB, Ng EK, Lo YD. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem. 2002;48(10):1647–1653. doi: 10.1093/clinchem/48.10.1647
  • Forchette L, Sebastian W, Liu T. A comprehensive review of covid-19 virology, vaccines, variants, and therapeutics. Curr Med Sci. 2021;41(6):1037–1051. doi: 10.1007/s11596-021-2395-1
  • Kiaie SH, Majidi Zolbanin N, Ahmadi A, et al. Recent advances in mRNA-LNP therapeutics: immunological and pharmacological aspects. J Nanobiotechnol. 2022;20(1):276. doi: 10.1186/s12951-022-01478-7
  • Cullis PR, Hope MJ. Lipid nanoparticle systems for enabling gene therapies. Mol Ther. 2017;25(7):1467–1475. doi: 10.1016/j.ymthe.2017.03.013
  • Kedmi R, Ben-Arie N, Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials. 2010;31(26):6867–6875. doi: 10.1016/j.biomaterials.2010.05.027
  • Guimaraes PPG, Zhang R, Spektor R, et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. JControlled Release. 2019;316:404–417. doi: 10.1016/j.jconrel.2019.10.028
  • Habrant D, Peuziat P, Colombani T, et al. Design of ionizable lipids to overcome the limiting step of endosomal escape: application in the intracellular delivery of mRNA, DNA, and siRNA. J Med Chem. 2016;59(7):3046–3062. doi: 10.1021/acs.jmedchem.5b01679
  • Wang Y, Su H, Yang Y, et al. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther. 2013;21(2):358–367. doi: 10.1038/mt.2012.250
  • Kim Y, Kim H, Kim EH, et al. The potential of cell-penetrating peptides for mRNA delivery to cancer cells. Pharmaceutics. 2022;14(6):1271. doi: 10.3390/pharmaceutics14061271
  • Boisguérin P, Konate K, Josse E, et al. Peptide-based nanoparticles for therapeutic nucleic acid delivery. Biomedicines. 2021;9(5):583. doi: 10.3390/biomedicines9050583
  • Tripathi PP, Arami H, Banga I, et al. Cell penetrating peptides in preclinical and clinical cancer diagnosis and therapy. Oncotarget. 2018;9(98):37252–37267. doi: 10.18632/oncotarget.26442
  • Varkouhi AK, Scholte M, Storm G, et al. Endosomal escape pathways for delivery of biologicals. JControlled Release. 2011;151(3):220–228. doi: 10.1016/j.jconrel.2010.11.004
  • Madani F, Lindberg S, Langel Ü, et al. Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys. 2011;2011:e414729. doi: 10.1155/2011/414729
  • Seneff S, Nigh G, Kyriakopoulos AM, et al. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: the role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol. 2022;164:113008. doi: 10.1016/j.fct.2022.113008
  • Chakraborty C, Sharma AR, Bhattacharya M, et al. From COVID-19 to cancer mRNA vaccines: moving from bench to clinic in the vaccine landscape. Front Immunol. 2021 [cited 2023 Jun 4];12. doi: 10.3389/fimmu.2021.679344
  • Forsbach A, Nemorin J-G, Montino C, et al. Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J Immunol. 2008;180(6):3729–3738. doi: 10.4049/jimmunol.180.6.3729
  • Huang X, Zhang G, Tang T, et al. Identification of tumor antigens and immune subtypes of pancreatic adenocarcinoma for mRNA vaccine development. Mol Cancer. 2021;20(1):44. doi: 10.1186/s12943-021-01310-0
  • Committee GDR, Daimon T, Heike Y. Immunotherapy WG for CS of C, therapy WG for EC, et al. 2015 Guidance on cancer immunotherapy development in early-phase clinical studies. Cancer Sci. 2015;106(12):1761–1771. doi: 10.1111/cas.12819
  • Grimmett E, Al-Share B, Alkassab MB, et al. Cancer vaccines: past, present and future; a review article. Discov Onc. 2022;13(1):31. doi: 10.1007/s12672-022-00491-4
  • Anassi E, Ndefo UA. Sipuleucel-T (provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. P T. 2011;36:197–202.
  • Cheng ML, Fong L. Beyond sipuleucel-T: immune approaches to treating prostate cancer. Curr Treat Options Oncol. 2014;15:115–126. doi: 10.1007/s11864-013-0267-z.
  • Sanatkar SA, Heidari A, Rezaei N. Cancer immunotherapy: diverse approaches and obstacles. Curr Pharm Des. 2022;28(29):2387–2403. doi: 10.2174/1381612828666220728160519
  • Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;4(1):7. doi: 10.1038/s41541-019-0103-y
  • Yuan Y, Gao F, Chang Y, et al. Advances of mRNA vaccine in tumor: a maze of opportunities and challenges. Biomark Res. 2023;11(1):6. doi: 10.1186/s40364-023-00449-w
  • Zhao Y, Baldin AV, Isayev O, et al. Cancer vaccines: antigen selection strategy. Vaccines. 2021;9(2):85. doi: 10.3390/vaccines9020085
  • Kübler H, Scheel B, Gnad-Vogt U, et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J Immunother Cancer. 2015;3(1):26. doi: 10.1186/s40425-015-0068-y
  • Yang W, Cao J, Cheng H, et al. Nanoformulations targeting immune cells for cancer therapy: mRNA therapeutics. Bioact Mater. 2023 [cited 2023 Jun 21];23:438–470.
  • Kim J, Eygeris Y, Gupta M, et al. Self-assembled mRNA vaccines. Adv Drug Delivery Rev. 2021;170:83–112. doi: 10.1016/j.addr.2020.12.014
  • Anderluzzi G, Lou G, Woods S, et al. The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency. JControlled Release. 2022;342:388–399. doi: 10.1016/j.jconrel.2021.12.008
  • Pei Y, Bao Y, Sacchetti C, et al. Synthesis and bioactivity of readily hydrolysable novel cationic lipids for potential lung delivery application of mRnas. Chem Phys Lipids. 2022;243:105178. doi: 10.1016/j.chemphyslip.2022.105178
  • He Q, Gao H, Tan D, et al. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm Sin B. 2022;12(7):2969–2989. doi: 10.1016/j.apsb.2022.03.011
  • Xu S, Yang K, Li R, et al. mRNA vaccine era—mechanisms, drug platform and clinical prospection. IJMS. 2020;21(18):6582. doi: 10.3390/ijms21186582
  • How mRNA vaccines might help treat cancer - NCI; 2022. [cited 2023 Jun 4]; Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2022/mrna-vaccines-to-treat-cancer.
  • Yadav AK, Gnawali S, Mandal S, et al. mRNA COVID-19 vaccine: A future hope for cancer treatment. J Biomed Sci. 2021;8(2):47–49. doi: 10.3126/jbs.v8i2.41959
  • McNamara MA, Nair SK, Holl EK. RNA-Based vaccines in cancer immunotherapy. J Immunol Res. 2015;2015:1–9. doi: 10.1155/2015/794528.
  • Nitika WJ, Hui A-M. The delivery of mRNA vaccines for therapeutics. Life. 2022;12:1254. doi: 10.3390/life12081254.
  • Usach I, Martinez R, Festini T, et al. Subcutaneous injection of drugs: literature review of factors influencing pain sensation at the injection site. Adv Ther. 2019;36(11):2986–2996. doi: 10.1007/s12325-019-01101-6
  • Phua KKL, Staats HF, Leong KW, et al. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci Rep. 2014;4(1):5128. doi: 10.1038/srep05128
  • Barbier AJ, Jiang AY, Zhang P, et al. The clinical progress of mRNA vaccines and immunotherapies. Nat Biotechnol. 2022;40(6):840–854. doi: 10.1038/s41587-022-01294-2
  • Jewell CM, Bustamante López SC, Irvine DJ. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc Natl Acad Sci, USA. 2011;108(38):15745–15750. doi: 10.1073/pnas.1105200108
  • Bol KF, Figdor CG, Aarntzen EH, et al. Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients. Oncoimmunology. 2015;4(8):e1019197. doi: 10.1080/2162402X.2015.1019197
  • Van Hoecke L, Roose K, Ballegeer M, et al. The opposing effect of type I IFN on the T cell response by non-modified mRNA-lipoplex vaccines is determined by the route of administration. Mol Ther Nucleic Acids. 2020;22:373–381. doi: 10.1016/j.omtn.2020.09.004
  • Biellak C. Neoantigens: the future of personalized cancer. BSJ. 2022 [cited 2023 Jun 4];26. doi: 10.5070/BS326258269
  • Jiang T, Shi T, Zhang H, et al. Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol. 2019;12(1):93. doi: 10.1186/s13045-019-0787-5