1,780
Views
1
CrossRef citations to date
0
Altmetric
Review

A China-developed adenovirus vector-based COVID-19 vaccine: review of the development and application of Ad5-nCov

, , , &
Pages 704-713 | Received 21 Jan 2023, Accepted 26 Jul 2023, Published online: 01 Aug 2023

References

  • Kim MC, Park JH, Choi SH, et al. Rhinovirus incidence rates indicate we are tired of non-pharmacological interventions against coronavirus disease 2019. J Korean Med Sci. 2022;37(2):e15. doi: 10.3346/jkms.2022.37.e15
  • Ligtenberg A, Brand HS. What are the differences between the various COVID-19 vaccines? Ned Tijdschr Tandheelkd. 2021;128(epub): epub ahead of print. doi: 10.5177/ntvt.2021.epub.21038
  • Sakurai F, Tachibana M, Mizuguchi H. Adenovirus vector-based vaccine for infectious diseases. Drug Metab Pharmacokinet. 2022;42(1):100432. doi: 10.1016/j.dmpk.2021.100432
  • Gebre MS, Brito LA, Tostanoski LH, et al. Novel approaches for vaccine development. Cell. 2021;184(6):1589–1603. doi: 10.1016/j.cell.2021.02.030
  • Khoshnood S, Ghanavati R, Shirani M, et al. Viral vector and nucleic acid vaccines against COVID-19: A narrative review. Front Microbiol. 2022;13:984536. doi: 10.3389/fmicb.2022.984536
  • Hasanpourghadi M, Novikov M, Ertl H. COVID-19 vaccines based on adenovirus vectors. Trends Biochem Sci. 2021;46(5):429–430. doi: 10.1016/j.tibs.2021.03.002
  • Dhakal S, Loube J, Misplon JA, et al. Effect of an adenovirus-vectored universal influenza virus vaccine on pulmonary pathophysiology in a mouse model. J Virol. 2021;95(9): doi: 10.1128/JVI.02359-20
  • Volz A, Sutter G. Modified vaccinia virus ankara: history, value in basic research, and current perspectives for vaccine development. Adv Virus Res. 2017;97:187–243.
  • Perciani CT, Jaoko W, Walmsley S, et al. Protocol of a randomised controlled trial characterising the immune responses induced by varicella-zoster virus (VZV) vaccination in healthy Kenyan women: setting the stage for a potential VZV-based HIV vaccine. BMJ Open. 2017;7(9):e017391. doi: 10.1136/bmjopen-2017-017391
  • Kulkarni R, Chen WC, Lee Y, et al. Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. Plos One. 2021;16(9):e0257191. doi: 10.1371/journal.pone.0257191
  • Frantz PN, Barinov A, Ruffie C, et al. A live measles-vectored COVID-19 vaccine induces strong immunity and protection from SARS-CoV-2 challenge in mice and hamsters. Nat Commun. 2021;12(1):6277. doi: 10.1038/s41467-021-26506-2
  • Wilmschen S, Schneider S, Peters F, et al. RSV vaccine based on rhabdoviral vector protects after single immunization. Vaccines (Basel). 2019;7(3):59. doi: 10.3390/vaccines7030059
  • Kotomina T, Korenkov D, Matyushenko V, et al. Live attenuated influenza vaccine viral vector induces functional cytotoxic T-cell immune response against foreign CD8+ T-cell epitopes inserted into NA and NS1 genes using the 2A self-cleavage site. Hum Vaccin Immunother. 2018;14(12):2964–2970. doi: 10.1080/21645515.2018.1502529
  • Manjaly TZ, Satti I, Marshall JL, et al. Alternate aerosol and systemic immunisation with a recombinant viral vector for tuberculosis, MVA85A: A phase I randomised controlled trial. PLOS Med. 2019;16(4):e1002790. doi: 10.1371/journal.pmed.1002790
  • Sadoff J, De Paepe E, Haazen W, et al. Safety and immunogenicity of the Ad26.RSV.preF investigational vaccine coadministered with an influenza vaccine in older adults. J Infect Dis. 2021;223(4):699–708. doi: 10.1093/infdis/jiaa409
  • Venkatraman N, Anagnostou N, Bliss C, et al. Safety and immunogenicity of heterologous prime-boost immunization with viral-vectored malaria vaccines adjuvanted with Matrix-M. Vaccine. 2017;35(45):6208–6217. doi: 10.1016/j.vaccine.2017.09.028
  • Zhu FC, Wurie AH, Hou LH, et al. Safety and immunogenicity of a recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in Sierra Leone: a single-centre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2017;389(10069):621–628. doi: 10.1016/S0140-6736(16)32617-4
  • Creech CB, Walker SC, Samuels RJ. SARS-CoV-2 Vaccines. J Am Med Assoc. 2021;325(13):1318–1320. doi: 10.1001/jama.2021.3199
  • Romanenko M, Osipov I, Netesov SV, et al. Adenovirus type 6: subtle structural distinctions from adenovirus type 5 result in essential differences in properties and perspectives for gene therapy. Pharmaceutics. 2021;13(10):1641. doi: 10.3390/pharmaceutics13101641
  • Persson BD, John L, Rafie K, et al. Human species D adenovirus hexon capsid protein mediates cell entry through a direct interaction with CD46. Proc Natl Acad Sci U S A. 2021;118(3):e2020732118. doi: 10.1073/pnas.2020732118
  • Shin SP, Shin KS, Lee JM, et al. The chimeric adenovirus (Ad5/35) expressing engineered spike protein confers immunity against SARS-CoV-2 in mice and non-human primates. Vaccines (Basel). 2022;10(5):712. doi: 10.3390/vaccines10050712
  • Xu K, An Y, Li Q, et al. Recombinant chimpanzee adenovirus AdC7 expressing dimeric tandem-repeat spike protein RBD protects mice against COVID-19. Emerg Microbes Infect. 2021;10(1):1574–1588. doi: 10.1080/22221751.2021.1959270
  • Capone S, Raggioli A, Gentile M, et al. Immunogenicity of a new gorilla adenovirus vaccine candidate for COVID-19. Mol Ther. 2021;29(8):2412–2423. doi: 10.1016/j.ymthe.2021.04.022
  • Tostanoski LH, Gralinski LE, Martinez DR, et al. Protective efficacy of rhesus adenovirus COVID-19 vaccines against mouse-adapted SARS-CoV-2. J Virol. 2021;95(23):e0097421. doi: 10.1128/JVI.00974-21
  • Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845–1854. doi: 10.1016/S0140-6736(20)31208-3
  • Sadoff J, Gray G, Vandebosch A, et al. Safety And efficacy of single-dose Ad26.COV2.S vaccine against covid-19. N Engl J Med. 2021;384(23):2187–2201. doi: 10.1056/NEJMoa2101544
  • Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396(10255):887–897. doi: 10.1016/S0140-6736(20)31866-3
  • Ramasamy MN, Minassian AM, Ewer KJ, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2020;396(10267):1979–1993. doi: 10.1016/S0140-6736(20)32466-1
  • Jacob-Dolan C, Barouch DH. COVID-19 vaccines: adenoviral vectors. Annu Rev Med. 2022;73(1):41–54. doi: 10.1146/annurev-med-012621-102252
  • Cohen J. China’s vaccine gambit. Science. 2020;370(6522):1263–1267. doi: 10.1126/science.370.6522.1263
  • Zhu FC, Guan XH, Li YH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020;396(10249):479–488. doi: 10.1016/S0140-6736(20)31605-6
  • Halperin SA, Ye L, MacKinnon-Cameron D, et al. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: an international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. Lancet. 2022;399(10321):237–248. doi: 10.1016/S0140-6736(21)02753-7
  • Wu S, Huang J, Zhang Z, et al. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCov) in adults: preliminary report of an open-label and randomised phase 1 clinical trial. Lancet Infect Dis. 2021;21(12):1654–1664. doi: 10.1016/S1473-3099(21)00396-0
  • NMPA. The NMPA conditionally approved the application for registration of the recombinant novel coronavirus vaccine (adenovirus type 5 vector) by CanSinoBIO. Accessed Dec 31, 2022, from: https://www.nmpa.gov.cn/yaowen/ypjgyw/20210225184523188.html
  • Jin P, Guo X, Chen W, et al. Safety and immunogenicity of heterologous boost immunization with an adenovirus type-5-vectored and protein-subunit-based COVID-19 vaccine (Convidecia/ZF2001): A randomized, observer-blinded, placebo-controlled trial. PLOS Med. 2022;19(5):e1003953. doi: 10.1371/journal.pmed.1003953
  • Li JX, Wu SP, Guo XL, et al. Safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised Ad5-nCov after two-dose priming with an inactivated SARS-CoV-2 vaccine in Chinese adults: a randomised, open-label, single-centre trial. Lancet Respir Med. 2022;10(8):739–748. doi: 10.1016/S2213-2600(22)00087-X
  • Convidecia Approved as Heterologous Booster in China. Accessed Dec 31, 2022, from: https://www.cansinotech.com/html/1///179/180/950.html
  • World Health Organization. WHO-Prequalification of medical products (IVDs, medicines, vaccines and immunization devices, vector control). Accessed Dec 31, 2022, from: https://extranet.who.int/pqweb/vaccines/convidecia
  • CanSinoBIO’s Convidecia Air™ Receives Approval in China. Accessed Dec 31, 2022, from: https://www.cansinotech.com/html/1///179/180/1100.html
  • Lopez MV, Vinzon SE, Cafferata E, et al. A single dose of a hybrid hAdv5-Based Anti-COVID-19 vaccine induces a long-lasting immune response and broad coverage against VOC. Vaccines (Basel). 2021;9(10):1106. doi: 10.3390/vaccines9101106
  • King RG, Silva-Sanchez A, Peel JN, et al. Single-dose intranasal administration of adcovid elicits systemic and mucosal immunity against SARS-CoV-2 and fully protects mice from lethal challenge. Vaccines (Basel). 2021;9(8):881. doi: 10.3390/vaccines9080881
  • He J, Huang JR, Zhang YL, et al. SARS-CoV-2 nucleocapsid protein intranasal inoculation induces local and systemic T cell responses in mice. J Med Virol. 2021;93(4):1923–1925. doi: 10.1002/jmv.26769
  • Feng L, Wang Q, Shan C, et al. An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques. Nat Commun. 2020;11(1):4207. doi: 10.1038/s41467-020-18077-5
  • Rice A, Verma M, Shin A, et al. Intranasal plus subcutaneous prime vaccination with a dual antigen COVID-19 vaccine elicits T-cell and antibody responses in mice. Sci Rep. 2021;11(1):14917. doi: 10.1038/s41598-021-94364-5
  • Hassan AO, Shrihari S, Gorman MJ, et al. An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Rep. 2021;36(4):109452. doi: 10.1016/j.celrep.2021.109452
  • Bricker TL, Darling TL, Hassan AO, et al. A single intranasal or intramuscular immunization with chimpanzee adenovirus-vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters. Cell Rep. 2021;36(3):109400. doi: 10.1016/j.celrep.2021.109400
  • Hassan AO, Feldmann F, Zhao H, et al. A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. Cell Rep Med. 2021;2(4):100230. doi: 10.1016/j.xcrm.2021.100230
  • Johnson S, Martinez CI, Tedjakusuma SN, et al. Oral vaccination protects against severe acute respiratory syndrome coronavirus 2 in a syrian hamster challenge model. J Infect Dis. 2022;225(1):34–41. doi: 10.1093/infdis/jiab561
  • Hassan AO, Kafai NM, Dmitriev IP, et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell. 2020;183(1):169–184.e13. doi: 10.1016/j.cell.2020.08.026
  • Wu S, Zhong G, Zhang J, et al. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nat Commun. 2020;11(1):4081. doi: 10.1038/s41467-020-17972-1
  • Xu F, Wu S, Yi L, et al. Safety, mucosal and systemic immunopotency of an aerosolized adenovirus-vectored vaccine against SARS-CoV-2 in rhesus macaques. Emerg Microbes Infect. 2022;11(1):438–441. doi: 10.1080/22221751.2022.2030199
  • He Q, Mao Q, Zhang J, et al. Heterologous immunization with adenovirus vectored and inactivated vaccines effectively protects against SARS-CoV-2 variants in mice and macaques. Front Immunol. 2022;13:949248. doi: 10.3389/fimmu.2022.949248
  • Lapuente D, Fuchs J, Willar J, et al. Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization. Nat Commun. 2021;12(1):6871. doi: 10.1038/s41467-021-27063-4
  • He Q, Mao Q, An C, et al. Heterologous prime-boost: breaking the protective immune response bottleneck of COVID-19 vaccine candidates. Emerg Microbes Infect. 2021;10(1):629–637. doi: 10.1080/22221751.2021.1902245
  • Liu J, Xu K, Xing M, et al. Heterologous prime-boost immunizations with chimpanzee adenoviral vectors elicit potent and protective immunity against SARS-CoV-2 infection. Cell Discov. 2021;7(1):123. doi: 10.1038/s41421-021-00360-4
  • Li X, Wang L, Liu J, et al. Combining intramuscular and intranasal homologous prime-boost with a chimpanzee adenovirus-based COVID-19 vaccine elicits potent humoral and cellular immune responses in mice. Emerg Microbes Infect. 2022;11(1):1890–1899. doi: 10.1080/22221751.2022.2097479
  • Zhu F, Jin P, Zhu T, et al. Safety and immunogenicity of a recombinant adenovirus type-5-vectored coronavirus disease 2019 (COVID-19) vaccine with a homologous prime-boost regimen in healthy participants aged >/=6 Years: A randomized, double-blind, placebo-controlled, phase 2b trial. Clin Infect Dis. 2022;75(1):e783–e791. doi: 10.1093/cid/ciab845
  • Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a phase 1-2a trial of Ad26.COV2.S Covid-19 vaccine. N Engl J Med. 2021;384(19):1824–1835. doi: 10.1056/NEJMoa2034201
  • Guzman-Martinez O, Guardado K, de Guevara EL, et al. IgG antibodies generation and side effects caused by Ad5-nCov Vaccine (CanSino Biologics) and BNT162b2 Vaccine (Pfizer/BioNTech) among Mexican Population. Vaccines (Basel). 2021;9(9):999. doi: 10.3390/vaccines9090999
  • Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA Vaccine against SARS-CoV-2 - preliminary report. N Engl J Med. 2020;383(20):1920–1931. doi: 10.1056/NEJMoa2022483
  • Keech C, Albert G, Cho I, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020;383(24):2320–2332. doi: 10.1056/NEJMoa2026920
  • Jin L, Tang R, Wu S, et al. Antibody persistence and safety after heterologous boosting with orally aerosolised Ad5-nCov in individuals primed with two-dose CoronaVac previously: 12-month analyses of a randomized controlled trial. Emerg Microbes Infect. 2023;12(1):2155251. doi: 10.1080/22221751.2022.2155251
  • Song JY, Cheong HJ, Kim SR, et al. Early safety monitoring of COVID-19 vaccines in healthcare workers. J Korean Med Sci. 2021;36(15):e110. doi: 10.3346/jkms.2021.36.e110
  • Toledo-Salinas C, Scheffler-Mendoza SC, Castano-Jaramillo LM, et al. Anaphylaxis to SARS-CoV-2 vaccines in the setting of a nationwide passive epidemiological surveillance program. J Clin Immunol. 2022;42(8):1593–1599. doi: 10.1007/s10875-022-01350-1
  • Kelton JG, Arnold DM, Nazy I. Lessons from vaccine-induced immune thrombotic thrombocytopenia. Nat Rev Immunol. 2021;21(12):753–755. doi: 10.1038/s41577-021-00642-8
  • Oliver SE, Wallace M, See I, et al. Use of the Janssen (Johnson & Johnson) COVID-19 vaccine: updated interim recommendations from the advisory committee on immunization practices - United States, December 2021. MMWR Morb Mortal Wkly Rep. 2022;71(3):90–95. doi: 10.15585/mmwr.mm7103a4
  • Maramattom BV, Krishnan P, Paul R, et al. Guillain-Barre Syndrome following ChAdOx1-S/nCoV-19 Vaccine. Ann Neurol. 2021;90(2):312–314. doi: 10.1002/ana.26143
  • Osowicki J, Morgan H, Harris A, Kiers L, et al. Guillain-barre syndrome in an Australian State Using Both mRNA and adenovirus-vector SARS-CoV-2 Vaccines. Ann Neurol. 2021;90(5):856–858. doi: 10.1002/ana.26218
  • Oniszczuk J, Bettuzzi T, Anjou L, et al. De Novo IgA vasculitis following adenovirus-based SARS-CoV-2 vaccination. Clin Kidney J. 2021;15(3):587–589. doi: 10.1093/ckj/sfab257
  • Trogstad L, Robertson AH, Mjaaland S, et al. Association between ChAdOx1 nCoV-19 vaccination and bleeding episodes: Large population-based cohort study. Vaccine. 2021;39(40):5854–5857. doi: 10.1016/j.vaccine.2021.08.055
  • Roman GC, Gracia F, Torres A, et al. Acute Transverse Myelitis (ATM): clinical review of 43 patients with COVID-19-Associated ATM and 3 Post-Vaccination ATM Serious Adverse Events with the ChAdOx1 nCoV-19 Vaccine (AZD1222). Front Immunol. 2021;12:653786. doi: 10.3389/fimmu.2021.653786
  • Garcia-Grimshaw M, Galnares-Olalde JA, Bello-Chavolla OY, et al. Incidence of Guillain-Barre syndrome following SARS-CoV-2 immunization: Analysis of a nationwide registry of recipients of 81 million doses of seven vaccines. Eur J Neurol. 2022;29(11):3368–3379. doi: 10.1111/ene.15504
  • Garcia-Alanis M, Morales-Cardenas M, Toapanta-Yanchapaxi LN, et al. Psychological and psychiatric events following immunization with five different vaccines against SARS-CoV-2. Vaccines (Basel). 2022;10(8):1297. doi: 10.3390/vaccines10081297
  • López-Mena D, García-Grimshaw M, Saldivar-Dávila S, et al. Stroke among SARS-CoV-2 vaccine recipients in mexico: a nationwide descriptive study. Neurology. 2022;98(19):e1933–e1941. doi: 10.1212/WNL.0000000000200388
  • Yang X, Wu L, Zheng D, et al. COVID-19 vaccination for patients with benign childhood epilepsy with centrotemporal spikes. Epilepsy Behav. 2022;134:108744. doi: 10.1016/j.yebeh.2022.108744
  • Toapanta-Yanchapaxi L, Chiquete E, Ávila-Rojo E, et al. Humoral response to different SARS-CoV-2 vaccines in orthotopic liver transplant recipients. Vaccine. 2022;40(38):5621–5630. doi: 10.1016/j.vaccine.2022.08.027
  • Zhuang Z, Lai X, Sun J, et al. Mapping and role of T cell response in SARS-CoV-2-infected mice. J Exp Med. 2021;218(4):e20202187. doi: 10.1084/jem.20202187
  • Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature. 2020;586(7830):594–599. doi: 10.1038/s41586-020-2814-7
  • Ewer KJ, Barrett JR, Belij-Rammerstorfer S, et al. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nat Med. 2021;27(2):270–278. doi: 10.1038/s41591-020-01194-5
  • Gonzalez S, Olszevicki S, Salazar M, et al. Effectiveness of the first component of Gam-COVID-Vac (Sputnik V) on reduction of SARS-CoV-2 confirmed infections, hospitalisations and mortality in patients aged 60-79: a retrospective cohort study in Argentina. EClinicalMedicine. 2021;40:101126. doi: 10.1016/j.eclinm.2021.101126
  • Baum U, Poukka E, Palmu AA, et al. Effectiveness of vaccination against SARS-CoV-2 infection and Covid-19 hospitalisation among Finnish elderly and chronically ill—An interim analysis of a nationwide cohort study. Plos One. 2021;16(11):e258704. doi: 10.1371/journal.pone.0258704
  • Llibre JM, Revollo B, Aguilar S, et al. Protection against severe clinical outcomes with adenovirus or messenger RNA severe acute respiratory syndrome coronavirus 2 vaccines in patients hospitalized with coronavirus disease 2019. J Infect Dis. 2022;226(5):938–940. doi: 10.1093/infdis/jiac256
  • Ma C, Sun W, Tang T, et al. Effectiveness of adenovirus type 5 vectored and inactivated COVID-19 vaccines against symptomatic COVID-19, COVID-19 pneumonia, and severe COVID-19 caused by the B.1.617.2 (Delta) variant: Evidence from an outbreak in Yunnan, China, 2021. Vaccine. 2022;40(20):2869–2874. doi: 10.1016/j.vaccine.2022.03.067
  • Richardson VL, Camacho FM, Bautista MA, et al. Vaccine Effectiveness of CanSino (Adv5-nCov) coronavirus disease 2019 (COVID-19) vaccine among childcare workers-Mexico, March-December 2021. Clin Infect Dis. 2022;75(Suppl 2):S167–S173. doi: 10.1093/cid/ciac488
  • Zhang X, Wang Y, Hu C, et al. Effectiveness of a booster dose of COVID-19 vaccines during an outbreak of SARS-CoV-2 Omicron BA.2.2 in China: A case-control study. Hum Vaccin Immunother. 2023;19(1):2194189. doi: 10.1080/21645515.2023.2194189
  • Huang Z, Xu S, Liu J, et al. Effectiveness of inactivated and Ad5-nCov COVID-19 vaccines against SARS-CoV-2 Omicron BA. 2 variant infection, severe illness, and death. BMC Med. 2022;20(1):400. doi: 10.1186/s12916-022-02606-8
  • Guzman-Lopez S, Darwich-Salazar A, Bocanegra-Ibarias P, et al. Clinical and immunologic efficacy of the recombinant adenovirus type-5-vectored (CanSino Bio) vaccine in University Professors during the COVID-19 Delta Wave. Vaccines (Basel). 2022;10(5):656. doi: 10.3390/vaccines10050656
  • Morales-Núñez JJ, Muñoz-Valle JF, Machado-Sulbarán AC, et al. Comparison of three different COVID-19 vaccine platforms (CoronaVac, BTN162b2, and Ad5-nCov) in individuals with and without prior COVID-19: Reactogenicity and neutralizing antibodies. Immunol Lett. 2022;251-252:20–28. doi: 10.1016/j.imlet.2022.10.002
  • Carabelli AM, Peacock TP, Thorne LG, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21(3):162–177. doi: 10.1038/s41579-022-00841-7
  • Chavda VP, Bezbaruah R, Deka K, et al. The delta and omicron variants of SARS-CoV-2: what we know so far. Vaccines (Basel). 2022;10(11):1926. doi: 10.3390/vaccines10111926
  • Looi MK. How are COVID-19 symptoms changing? BMJ. 2023;380:3. doi: 10.1136/bmj.p3
  • Chavda VP, Patel AB, Vaghasiya DD. SARS-CoV-2 variants and vulnerability at the global level. J Med Virol. 2022;94(7):2986–3005. doi: 10.1002/jmv.27717
  • Tan CS, Collier AY, Yu J, et al. Durability of heterologous and homologous COVID-19 vaccine boosts. JAMA Netw Open. 2022;5(8):e2226335. doi: 10.1001/jamanetworkopen.2022.26335
  • Garg I, Sheikh AB, Pal S, et al. Mix-and-Match COVID-19 Vaccinations (Heterologous Boost): A Review. Infect Dis Rep. 2022;14(4):537–546. doi: 10.3390/idr14040057
  • Zhong J, Liu S, Cui T, et al. Heterologous booster with inhaled adenovirus vector COVID-19 vaccine generated more neutralizing antibodies against different SARS-CoV-2 variants. Emerg Microbes Infect. 2022;11(1):2689–2697. doi: 10.1080/22221751.2022.2132881
  • Li J, Hou L, Guo X, et al. Heterologous AD5-Ncov plus CoronaVac versus homologous CoronaVac vaccination: a randomized phase 4 trial. Nat Med. 2022;28(2):401–409. doi: 10.1038/s41591-021-01677-z
  • Wanlapakorn N, Suntronwong N, Phowatthanasathian H, et al. Immunogenicity of heterologous inactivated and adenoviral-vectored COVID-19 vaccine: Real-world data. Vaccine. 2022;40(23):3203–3209. doi: 10.1016/j.vaccine.2022.04.043
  • Tang R, Zheng H, Wang BS, et al. Safety and immunogenicity of aerosolised Ad5-nCov, intramuscular Ad5-nCov, or inactivated COVID-19 vaccine CoronaVac given as the second booster following three doses of CoronaVac: a multicentre, open-label, phase 4, randomised trial. Lancet Respir Med. 2023;S2213-2600(23):00049–8. doi: 10.2139/ssrn.4308756
  • Kong W, Zhong Q, Chen M, et al. Ad5-nCov booster and Omicron variant breakthrough infection following two doses of inactivated vaccine elicit comparable antibody levels against Omicron variants. J Med Virol. 2023;95(1):e28163. doi: 10.1002/jmv.28163
  • Munro A, Janani L, Cornelius V, et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet. 2021;398(10318):2258–2276. doi: 10.1016/S0140-6736(21)02717-3
  • Stuart A, Shaw RH, Liu X, et al. Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): a single-blind, randomised, phase 2, non-inferiority trial. Lancet. 2022;399(10319):36–49. doi: 10.1016/S0140-6736(21)02718-5
  • Pascuale CA, Varese A, Ojeda DS, et al. Immunogenicity and reactogenicity of heterologous immunization against SARS CoV-2 using Sputnik V, ChAdOx1-S, BBIBP-CorV, Ad5-nCov, and Mrna-1273. Cell Rep Med. 2022;3(8):100706. doi: 10.1016/j.xcrm.2022.100706
  • Munoz-Valle JF, Sanchez-Zuno GA, Matuz-Flores MG, et al. Efficacy and safety of heterologous booster vaccination after Ad5-nCov (CanSino Biologics) vaccine: a preliminary descriptive study. Vaccines (Basel). 2022;10(3):400. doi: 10.3390/vaccines10030400
  • Romero-Ibarguengoitia ME, Rivera-Salinas D, Hernandez-Ruiz YG, et al. Effect of heterologous vaccination regimen with Ad5-nCov CanSinoBio and BNT162b2 Pfizer in SARS-CoV-2 IgG antibodies titers. Vaccines (Basel). 2022;10(3):392. doi: 10.3390/vaccines10030392
  • Hernández J, Dehesa-Canseco F, Vázquez-López AB, et al. Neutralization of Omicron BA.1, BA.5.1.6, BQ.1.3 and XBB1.1 induced by heterologous vaccination Ad5-nCov and Mrna-1273. Signal Transduct Target Ther. 2023;8(1):174. doi: 10.1038/s41392-023-01447-y