1,468
Views
0
CrossRef citations to date
0
Altmetric
Review

Understanding immunity to influenza: implications for future vaccine development

ORCID Icon
Pages 871-875 | Received 01 Jul 2023, Accepted 28 Sep 2023, Published online: 12 Oct 2023

References

  • Tyrrell CS, Allen JLY, Gkrania-Klotsas E. Influenza: epidemiology and hospital management. Medicine (Abingdon). 2021;49(12):797–804. doi: 10.1016/j.mpmed.2021.09.015
  • Manjeet R, Mohan H, Narang J, et al. A changing trend in diagnostic methods of influenza a (H3N2) virus in human: a review. 3 Biotech. 2021;11(2):87. doi: 10.1007/s13205-021-02642-w
  • Tong S, Zhu X, Li Y, et al. New world bats harbor diverse influenza a viruses. PLOS Pathog. 2013;9(10):e1003657. doi: 10.1371/journal.ppat.1003657
  • Gong X, Hu M, Chen W, et al. Reassortment network of influenza a virus. Front Microbiol. 2021;12:793500. doi: 10.3389/fmicb.2021.793500
  • Brussow H. The beginning and ending of a respiratory viral pandemic-lessons from the Spanish flu. Microbiol Biotechnol. 2022;15(5):1301–1317. doi: 10.1111/1751-7915.14053
  • Hollingsworth R, El Guerche-Seblain C, Tsai T, et al. Assessment of the benefits of seasonal influenza vaccination: elements of a framework to interpret estimates of vaccine effectiveness and support robust decision-making and communication. Influenza Other Respir Viruses. 2021;15(1):164–174. doi: 10.1111/irv.12786
  • Zhang Y, Xu C, Zhang H, et al. Targeting hemagglutinin: approaches for broad protection against the influenza a virus. Viruses. 2019;11(5):405. doi: 10.3390/v11050405
  • Yewdell JW. Antigenic drift: understanding COVID-19. Immunity. 2021;54(12):2681–2687. doi: 10.1016/j.immuni.2021.11.016
  • Smith DJ, Lapedes AS, de Jong JC, et al. Mapping the antigenic and genetic evolution of influenza virus. Science. 2004;305(5682):371–376. doi: 10.1126/science.1097211
  • Lewnard JA, Cobey S. Immune history and influenza vaccine effectiveness. Vaccines (Basel). 2018;6(2):28. doi: 10.3390/vaccines6020028
  • Becker T, Elbahesh H, Reperant LA, et al. Influenza vaccines: successes and continuing challenges. J Infect Dis. 2021;224(12 Suppl 2):S405–S419. doi: 10.1093/infdis/jiab269
  • Kelvin AA, Zambon M. Influenza imprinting in childhood and the influence on vaccine response later in life. Euro Surveill. 2019;24(48). doi: 10.2807/1560-7917.ES.2019.24.48.1900720
  • Ilyushina NA, Haynes BC, Hoen AG, et al. Live attenuated and inactivated influenza vaccines in children. J Infect Dis. 2015;211(3):352–360. doi: 10.1093/infdis/jiu458
  • Rajaram S, Boikos C, Gelone DK, et al. Influenza vaccines: the potential benefits of cell-culture isolation and manufacturing. Ther Adv Vaccines Immunother. 2020;8:2515135520908121. doi: 10.1177/2515135520908121
  • Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021;28(3–4):117–129. doi: 10.1038/s41434-020-00204-y
  • Comes JDG, Pijlman GP, Hick TAH. Rise of the RNA machines - self-amplification in mRNA vaccine design. Trends Biotechnol. 2023. doi: 10.1016/j.tibtech.2023.05.007
  • Krammer F, Garcia-Sastre A, Palese P. Is it possible to develop a “universal” influenza virus vaccine? Potential target antigens and critical aspects for a universal influenza vaccine. Cold Spring Harb Perspect Biol. 2018;10(7):a028845. doi: 10.1101/cshperspect.a028845
  • Sherman AC, Mehta A, Dickert NW, et al. The future of flu: a review of the human challenge model and systems biology for advancement of influenza vaccinology. Front Cell Infect Microbiol. 2019;9:107. doi: 10.3389/fcimb.2019.00107
  • Kilbourne ED, Laver WG, Schulman JL, et al. Antiviral activity of antiserum specific for an influenza virus neuraminidase. J Virol. 1968;2(4):281–288. doi: 10.1128/jvi.2.4.281-288.1968
  • Hemann EA, Kang SM, Legge KL. Protective CD8 T cell-mediated immunity against influenza a virus infection following influenza virus-like particle vaccination. J Immunol. 2013;191(5):2486–2494. doi: 10.4049/jimmunol.1300954
  • Wilkinson TM, Li CK, Chui CS, et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med. 2012;18(2):274–280. doi: 10.1038/nm.2612
  • Clem AS. Fundamentals of vaccine immunology. J Glob Infect Dis. 2011;3(1):73–78. doi: 10.4103/0974-777X.77299.
  • Palgen JL, Feraoun Y, Dzangue-Tchoupou G, et al. Optimize prime/boost vaccine strategies: trained immunity as a new player in the game. Front Immunol. 2021;12:612747. doi: 10.3389/fimmu.2021.612747
  • Ou BS, Saouaf OM, Baillet J, et al. Sustained delivery approaches to improving adaptive immune responses. Adv Drug Deliv Rev. 2022;187:114401. doi: 10.1016/j.addr.2022.114401
  • Budroni S, Buricchi F, Cavallone A, et al. Antibody avidity, persistence, and response to antigen recall: comparison of vaccine adjuvants. NPJ Vaccines. 2021;6(1):78. doi: 10.1038/s41541-021-00337-0
  • Zimmermann P, Curtis N. Factors that influence the immune response to vaccination. Clin Microbiol Rev. 2019;32(2). doi: 10.1128/CMR.00084-18
  • Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:114. doi: 10.3389/fimmu.2013.00114
  • Pilishvili T, Gierke R, Fleming-Dutra KE, et al. Effectiveness of mRNA covid-19 vaccine among U.S. Health care personnel. N Engl J Med. 2021;385(25):e90. doi: 10.1056/NEJMoa2106599
  • Link-Gelles R, Levy ME, Natarajan K, et al. Estimation of COVID-19 mRNA vaccine effectiveness and COVID-19 illness and severity by vaccination status during omicron BA.4 and BA.5 sublineage periods. JAMA Netw Open. 2023;6(3):e232598. doi: 10.1001/jamanetworkopen.2023.2598
  • Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–416. doi: 10.1056/NEJMoa2035389
  • Zhang C, Maruggi G, Shan H, et al. Advances in mRNA vaccines for Infectious Diseases. Front Immunol. 2019;10:594. doi: 10.3389/fimmu.2019.00594
  • Lundstrom K. Latest development on RNA-based drugs and vaccines. Future Sci OA. 2018;4(5):FSO300.
  • Uchida S, Yoshinaga N, Yanagihara K, et al. Designing immunostimulatory double stranded messenger RNA with maintained translational activity through hybridization with poly a sequences for effective vaccination. Biomaterials. 2018;150:162–170. doi: 10.1016/j.biomaterials.2017.09.033
  • Pecetta S, Rappuoli RR. mRNA, the beginning of a new influenza vaccine game. Proc Natl Acad Sci U S A. 2022;119(50):e2217533119. doi: 10.1073/pnas.2217533119
  • Mohn KG, Smith I, Sjursen H, et al. Immune responses after live attenuated influenza vaccination. Hum Vaccin Immunother. 2018;14(3):571–578. doi: 10.1080/21645515.2017.1377376
  • Nuwarda RF, Alharbi AA, Kayser V. An overview of influenza viruses and vaccines. Vaccines (Basel). 2021;9(9):1032. doi: 10.3390/vaccines9091032
  • Wong SS, Webby RJ. Traditional and new influenza vaccines. Clin Microbiol Rev. 2013;26(3):476–492. doi: 10.1128/CMR.00097-12
  • Arevalo CP, Bolton MJ, Le Sage V, et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science. 2022;378(6622):899–904. doi: 10.1126/science.abm0271
  • Krammer F. The human antibody response to influenza a virus infection and vaccination. Nat Rev Immunol. 2019;19(6):383–397. doi: 10.1038/s41577-019-0143-6
  • Patel MM, York IA, Monto AS, et al. Immune-mediated attenuation of influenza illness after infection: opportunities and challenges. Lancet Microbe. 2021;2(12):e715–e725. doi: 10.1016/S2666-5247(21)00180-4
  • Pulendran B, SA P, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20(6):454–475. doi: 10.1038/s41573-021-00163-y
  • Verma SK, Mahajan P, Singh NK, et al. New-age vaccine adjuvants, their development, and future perspective. Front Immunol. 2023;14:1043109. doi: 10.3389/fimmu.2023.1043109
  • Ndifon W. A simple mechanistic explanation for original antigenic sin and its alleviation by adjuvants. J R Soc Interface. 2015;12(112):20150627. doi: 10.1098/rsif.2015.0627
  • Rockman S, Laurie K, Barr I. Pandemic influenza vaccines: what did we learn from the 2009 pandemic and are we better prepared Now? Vaccines (Basel). 2020;8(2):211. doi: 10.3390/vaccines8020211
  • Creech CB, Walker SC, Samuels RJ. SARS-CoV-2 Vaccines. JAMA. 2021;325(13):1318–1320. doi: 10.1001/jama.2021.3199
  • Druedahl LC, Minssen T, Price WN. Collaboration in times of crisis: a study on COVID-19 vaccine R&D partnerships. Vaccine. 2021;39(42):6291–6295. doi: 10.1016/j.vaccine.2021.08.101
  • Rcheulishvili N, Mao J, Papukashvili D, et al. Development of a multi-epitope universal mRNA vaccine candidate for Monkeypox, smallpox, and vaccinia viruses: design and in silico analyses. Viruses. 2023;15(5):1120. doi: 10.3390/v15051120
  • Naz A, Shahid F, Butt TT, et al. Designing multi-epitope vaccines to combat emerging coronavirus disease 2019 (COVID-19) by employing immuno-informatics approach. Front Immunol. 2020;11:1663. doi: 10.3389/fimmu.2020.01663
  • Iwasaki A, Pillai PS. Innate immunity to influenza virus infection. Nat Rev Immunol. 2014;14(5):315–328. doi: 10.1038/nri3665
  • Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21(2):83–100. doi: 10.1038/s41577-020-00479-7
  • Wu NC, Wilson IA. Structural insights into the design of novel anti-influenza therapies. Nat Struct Mol Biol. 2018;25(2):115–121. doi: 10.1038/s41594-018-0025-9
  • Zhou Z, Barrett J, He X. Immune imprinting and implications for COVID-19. Vaccines (Basel). 2023;11(4):875. doi: 10.3390/vaccines11040875
  • Lee J, Paparoditis P, Horton AP, et al. Persistent antibody clonotypes dominate the serum response to influenza over multiple years and repeated vaccinations. Cell Host Microbe. 2019;25(3):367–376 e365. doi: 10.1016/j.chom.2019.01.010
  • Schijns V, Fernandez-Tejada A, Barjaktarovic Z, et al. Modulation of immune responses using adjuvants to facilitate therapeutic vaccination. Immunol Rev. 2020;296(1):169–190. doi: 10.1111/imr.12889
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010;33(4):492–503. doi: 10.1016/j.immuni.2010.10.002.
  • Vogel FR. Improving vaccine performance with adjuvants. Clin Infect Dis. 2000;30 Suppl 3(Supplement_3):S266–270. doi: 10.1086/313883
  • Xie Y, Tian X, Zhang X, et al. Immune interference in effectiveness of influenza and COVID-19 vaccination. Front Immunol. 2023;14:1167214. doi: 10.3389/fimmu.2023.1167214
  • Nelson SA, Sant AJ. Imprinting and editing of the human CD4 T cell response to influenza virus. Front Immunol. 2019;10:932. doi: 10.3389/fimmu.2019.00932
  • Krammer F, Fouchier RAM, Eichelberger MC, et al. Naction! How can neuraminidase-based immunity contribute to better influenza virus vaccines? MBio. 2018;Mar-Apr;9(2). doi: 10.1128/mBio.02332-17
  • Wang Y, Song T, Li K, et al. Different subtypes of influenza viruses target different human proteins and pathways leading to different pathogenic phenotypes. Biomed Res Int. 2019;2019:4794910. Published online 2019 Oct 22. PMCID: PMC6854240 PMID: 31772934. doi: 10.1155/2019/4794910
  • Creytens S, Pascha MN, Ballegeer M, et al. Influenza neuraminidase characteristics and potential as a vaccine target. Front Immunol. 2021;12:786617.
  • Giurgea LT, Morens DM, Taubenberger JK, et al. Influenza neuraminidase: a neglected protein and its potential for a better influenza vaccine. Vaccines (Basel). 2020;8(3):409. doi: 10.3390/vaccines8030409
  • Rosu ME, Kok A, Bestebroer TM, et al. Contribution of neuraminidase to the efficacy of seasonal split influenza vaccines in the ferret Model. J Virol. 2022;96(6):e0195921. doi: 10.1128/jvi.01959-21