2,052
Views
0
CrossRef citations to date
0
Altmetric
Review

Microarray patches: scratching the surface of vaccine delivery

, , &
Pages 937-955 | Received 25 Jul 2023, Accepted 10 Oct 2023, Published online: 27 Oct 2023

References

  • Azad N, Rojanasakul Y. Vaccine delivery–current trends and future. Curr Drug Deliv. 2006 Apr;3(2):137–146. doi: 10.2174/156720106776359249
  • Lee YH, Harris RC, Oh HW, et al. Vaccine-related errors in reconstitution in South Korea: a National Physicians’ and nurses’ survey. Vaccines. 2021;9(2):117. doi: 10.3390/vaccines9020117
  • Auewarakul P, Kositanont U, Sornsathapornkul P, et al. Antibody responses after dose-sparing intradermal influenza vaccination. Vaccine. 2007 Jan 8;25(4):659–663. doi: 10.1016/j.vaccine.2006.08.026
  • Brown H, Kasel JA, Freeman DM, et al. The immunizing effect of influenza A/New Jersey/76 (Hsw1N1) virus vaccine administered intradermally and intramuscularly to adults. J Infect Dis. 1977 Dec;136(Suppl):S466–71. doi: 10.1093/infdis/136.Supplement_3.S466
  • Chiu SS, Peiris JS, Chan KH, et al. Immunogenicity and safety of intradermal influenza immunization at a reduced dose in healthy children. Pediatrics. 2007 Jun;119(6):1076–1082. doi: 10.1542/peds.2006-3176
  • Fishbein DB, Pacer RE, Holmes DF, et al. Rabies preexposure prophylaxis with human diploid cell rabies vaccine: a dose-response study. J Infect Dis. 1987 Jul;156(1):50–55. doi: 10.1093/infdis/156.1.50
  • Halperin W, Weiss WI, Altman R, et al. A comparison of the intradermal and subcutaneous routes of influenza vaccination with A/New Jersey/76 (swine flu) and A/Victoria/75: report of a study and review of the literature. Am J Public Health. 1979 Dec;69(12):1247–1251. doi: 10.2105/AJPH.69.12.1247
  • Herbert FA, Larke RP, Markstad EL. Comparison of responses to influenza A/New Jersey/76-A/Victoria/75 virus vaccine administered intradermally or subcutaneously to adults with chronic respiratory disease. J Infect Dis. 1979 Aug;140(2):234–238. doi: 10.1093/infdis/140.2.234
  • Kenney RT, Frech SA, Muenz LR, et al. Dose sparing with intradermal injection of influenza vaccine. N Engl J Med. 2004 Nov 25;351(22):2295–2301. doi: 10.1056/NEJMoa043540
  • Khawplod P, Wilde H, Sirikwin S, et al. Revision of the Thai Red cross intradermal rabies post-exposure regimen by eliminating the 90-day booster injection. Vaccine. 2006 Apr 12;24(16):3084–3086. doi: 10.1016/j.vaccine.2006.01.051
  • Quiambao BP, Dimaano EM, Ambas C, et al. Reducing the cost of post-exposure rabies prophylaxis: efficacy of 0.1 ml PCEC rabies vaccine administered intradermally using the Thai Red cross post-exposure regimen in patients severely exposed to laboratory-confirmed rabid animals. Vaccine. 2005 Feb 25;23(14):1709–1714. doi: 10.1016/j.vaccine.2004.09.027
  • Warrell MJ, Nicholson KG, Warrell DA, et al. Economical multiple-site intradermal immunisation with human diploid-cell-strain vaccine is effective for post-exposure rabies prophylaxis. Lancet. 1985 May 11;1(8437):1059–1062. doi: 10.1016/S0140-6736(85)92367-0
  • Samuel BU, Cherian T, Sridharan G, et al. Immune response to intradermally injected inactivated poliovirus vaccine. Lancet. 1991 1991/Aug/10;338(8763):343–344. doi: 10.1016/0140-6736(91)90480-D
  • Arnou R, Eavis P, Pardo JR, et al. Immunogenicity, large scale safety and lot consistency of an intradermal influenza vaccine in adults aged 18-60 years: randomized, controlled, phase III trial. Hum Vaccin. 2010 Apr;6(4):346–354. doi: 10.4161/hv.6.4.10961
  • Arnou R, Icardi G, De Decker M, et al. Intradermal influenza vaccine for older adults: a randomized controlled multicenter phase III study. Vaccine. 2009 Dec 9;27(52):7304–7312. doi: 10.1016/j.vaccine.2009.10.033
  • Atmar RL, Patel SM, Keitel WA. Intanza(®): a new intradermal vaccine for seasonal influenza. Expert Rev Vaccines. 2010 Dec;9(12):1399–1409. doi: 10.1586/erv.10.134
  • Belshe RB, Newman FK, Cannon J, et al. Serum antibody responses after intradermal vaccination against influenza. N Engl J Med. 2004 Nov 25;351(22):2286–2294. doi: 10.1056/NEJMoa043555
  • Beran J, Ambrozaitis A, Laiskonis A, et al. Intradermal influenza vaccination of healthy adults using a new microinjection system: a 3-year randomised controlled safety and immunogenicity trial. BMC Med. 2009 Apr 2;7(1):13. doi: 10.1186/1741-7015-7-13
  • Holland D, Booy R, De Looze F, et al. Intradermal influenza vaccine administered using a new microinjection system produces superior immunogenicity in elderly adults: a randomized controlled trial. J Infect Dis. 2008 Sep 1;198(5):650–658. doi: 10.1086/590434
  • Laurent A, Mistretta F, Bottigioli D, et al. Echographic measurement of skin thickness in adults by high frequency ultrasound to assess the appropriate microneedle length for intradermal delivery of vaccines. Vaccine. 2007 Aug 21;25(34):6423–6430. doi: 10.1016/j.vaccine.2007.05.046
  • Laurent PE, Bonnet S, Alchas P, et al. Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. Vaccine. 2007 Dec 17;25(52):8833–8842. doi: 10.1016/j.vaccine.2007.10.020
  • Leroux-Roels I, Vets E, Freese R, et al. Seasonal influenza vaccine delivered by intradermal microinjection: a randomised controlled safety and immunogenicity trial in adults. Vaccine. 2008 Dec 2;26(51):6614–6619. doi: 10.1016/j.vaccine.2008.09.078
  • Van Damme P, Arnou R, Kafeja F, et al. Evaluation of non-inferiority of intradermal versus adjuvanted seasonal influenza vaccine using two serological techniques: a randomised comparative study. BMC Infect Dis. 2010 May 26;10(1):134. doi: 10.1186/1471-2334-10-134
  • Hung IF, Levin Y, To KK, et al. Dose sparing intradermal trivalent influenza (2010/2011) vaccination overcomes reduced immunogenicity of the 2009 H1N1 strain. Vaccine. 2012 Oct 5;30(45):6427–6435. doi: 10.1016/j.vaccine.2012.08.014
  • Troy SB, Kouiavskaia D, Siik J, et al. Comparison of the immunogenicity of various booster doses of inactivated polio vaccine delivered intradermally versus intramuscularly to HIV-Infected adults. J Infect Dis. 2015 Jun 15;211(12):1969–1976. doi: 10.1093/infdis/jiu841
  • Van Damme P, Oosterhuis-Kafeja F, der Wielen M V, et al. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine. 2009 Jan 14;27(3):454–459. doi: 10.1016/j.vaccine.2008.10.077
  • Della Cioppa G, Nicolay U, Lindert K, et al. A dose-ranging study in older adults to compare the safety and immunogenicity profiles of MF59®-adjuvanted and non-adjuvanted seasonal influenza vaccines following intradermal and intramuscular administration. Hum Vaccin Immunother. 2014;10(6):1701–1710. doi: 10.4161/hv.28618
  • Levin Y, Kochba E, Kenney R. Clinical evaluation of a novel microneedle device for intradermal delivery of an influenza vaccine: are all delivery methods the same? Vaccine. 2014 Jul 23;32(34):4249–4252. doi: 10.1016/j.vaccine.2014.03.024
  • Hepatitis B associated with jet gun injection — California. Morbidity Mortality Weekly Rep. 1986;35(23):373–376.
  • Jackson LA, Austin G, Chen RT, et al. Safety and immunogenicity of varying dosages of trivalent inactivated influenza vaccine administered by needle-free jet injectors. Vaccine. 2001 Sep 14;19(32):4703–4709. doi: 10.1016/S0264-410X(01)00225-0
  • Mohammed AJ, AlAwaidy S, Bawikar S, et al. Fractional doses of inactivated poliovirus vaccine in Oman. N Engl J Med. 2010 Jun 24;362(25):2351–2359. doi: 10.1056/NEJMoa0909383
  • Wang R, Epstein J, Baraceros FM, et al. Induction of CD4(+) T cell-dependent CD8(+) type 1 responses in humans by a malaria DNA vaccine. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10817–10822. doi: 10.1073/pnas.181123498
  • Bakari M, Aboud S, Nilsson C, et al. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania. Vaccine. 2011 Oct 26;29(46):8417–8428. doi: 10.1016/j.vaccine.2011.08.001
  • Beckett CG, Tjaden J, Burgess T, et al. Evaluation of a prototype dengue-1 DNA vaccine in a Phase 1 clinical trial. Vaccine. 2011 Jan 29;29(5):960–968. doi: 10.1016/j.vaccine.2010.11.050
  • Bråve A, Ljungberg K, Boberg A, et al. Multigene/Multisubtype HIV-1 vaccine induces potent cellular and humoral immune responses by needle-free intradermal delivery. Mol Ther. 2005 Dec;12(6):1197–1205. doi: 10.1016/j.ymthe.2005.06.473
  • Cattamanchi A, Posavad CM, Wald A, et al. Phase I study of a herpes simplex virus type 2 (HSV-2) DNA vaccine administered to healthy, HSV-2-seronegative adults by a needle-free injection system. Clin Vaccine Immunol. 2008 Nov;15(11):1638–1643. doi: 10.1128/CVI.00167-08
  • Epstein JE, Gorak EJ, Charoenvit Y, et al. Safety, tolerability, and lack of antibody responses after administration of a PfCSP DNA malaria vaccine via needle or needle-free jet injection, and comparison of intramuscular and combination intramuscular/intradermal routes. Hum Gene Ther. 2002 Sep 1;13(13):1551–1560. doi: 10.1089/10430340260201644
  • Jaoko W, Karita E, Kayitenkore K, et al. Safety and immunogenicity study of multiclade HIV-1 adenoviral vector vaccine alone or as boost following a multiclade HIV-1 DNA vaccine in Africa. PLoS One. 2010 Sep 21;5(9):e12873. doi: 10.1371/journal.pone.0012873
  • Resik S, Tejeda A, Lago PM, et al. Randomized controlled clinical trial of fractional doses of inactivated poliovirus vaccine administered intradermally by needle-free device in Cuba. J Infect Dis. 2010 May 1;201(9):1344–1352. doi: 10.1086/651611
  • Ault A, Zajac AM, Kong WP, et al. Immunogenicity and clinical protection against equine influenza by DNA vaccination of ponies. Vaccine. 2012 Jun 6;30(26):3965–3974. doi: 10.1016/j.vaccine.2012.03.026
  • Estívariz CF, Jafari H, Sutter RW, et al. Immunogenicity of supplemental doses of poliovirus vaccine for children aged 6-9 months in Moradabad, India: a community-based, randomised controlled trial. Lancet Infect Dis. 2012 Feb;12(2):128–135. doi: 10.1016/S1473-3099(11)70190-6
  • Gorres JP, Lager KM, Kong WP, et al. DNA vaccination elicits protective immune responses against pandemic and classic swine influenza viruses in pigs. Clin Vaccine Immunol. 2011 Nov;18(11):1987–1995. doi: 10.1128/CVI.05171-11
  • Osorio JE, Velez ID, Thomson C, et al. Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: a randomised, placebo-controlled, phase 1 study. Lancet Infect Dis. 2014 Sep;14(9):830–838. doi: 10.1016/S1473-3099(14)70811-4
  • Swain WE, Heydenburg Fuller D, Wu MS, et al. Tolerability and immune responses in humans to a PowderJect DNA vaccine for hepatitis B. Dev Biol (Basel). 2000;104:115–119.
  • Chen D, Zuleger C, Chu Q, et al. Epidermal powder immunization with a recombinant HIV gp120 targets langerhans cells and induces enhanced immune responses. AIDS Res Hum Retroviruses. 2002 Jul 1;18(10):715–722. doi: 10.1089/088922202760072348
  • Dean HJ, Chen D. Epidermal powder immunization against influenza. Vaccine. 2004 Dec 16;23(5):681–686. doi: 10.1016/j.vaccine.2004.06.041
  • Osorio JE, Zuleger CL, Burger M, et al. Immune responses to hepatitis B surface antigen following epidermal powder immunization. Immunol Cell Biol. 2003 Feb;81(1):52–58. doi: 10.1046/j.1440-1711.2003.01134.x
  • Roberts LK, Barr LJ, Fuller DH, et al. Clinical safety and efficacy of a powdered hepatitis B nucleic acid vaccine delivered to the epidermis by a commercial prototype device. Vaccine. 2005 Sep 23;23(40):4867–4878. doi: 10.1016/j.vaccine.2005.05.026
  • Kendall MAF, Quinlan NJ, Thorpe SJ, et al. Measurements of the gas and particle flow within a converging-diverging nozzle for high speed powdered vaccine and drug delivery. Exp Fluids. 2004 Jul 1;37(1):128–136. doi: 10.1007/s00348-004-0792-4
  • Guillot AJ, Cordeiro AS, Donnelly RF, et al. Microneedle-based delivery: an overview of Current applications and trends. Pharmaceutics. 2020;12(6):569. doi: 10.3390/pharmaceutics12060569
  • Kirkby M, Hutton ARJ, Donnelly RF. Microneedle mediated transdermal delivery of protein, peptide and antibody based therapeutics: Current status and future considerations. Pharm Res. 2020 Jun 2;37(6):117. doi: 10.1007/s11095-020-02844-6
  • Lee KJ, Jeong SS, Roh DH, et al. A practical guide to the development of microneedle systems – in clinical trials or on the market. Int J Pharm. 2020 Jan 5;573:118778.
  • Chu LY, Prausnitz MR. Separable arrowhead microneedles. J Control Release. 2011 Feb 10;149(3):242–249. doi: 10.1016/j.jconrel.2010.10.033
  • Courtenay AJ, Rodgers AM, McCrudden MTC, et al. Novel hydrogel-forming microneedle array for intradermal vaccination in Mice using Ovalbumin as a model protein antigen. Mol Pharm. 2019 Jan 7;16(1):118–127. doi: 10.1021/acs.molpharmaceut.8b00895
  • Fonseca DFS, Vilela C, Silvestre AJD, et al. A compendium of current developments on polysaccharide and protein-based microneedles. Int j biol macromol. 2019 Sep 1;136:704–728.
  • Jeong H-R, Bae J-Y, Park J-H, et al. Preclinical study of influenza bivalent vaccine delivered with a two compartmental microneedle array. J Control Release. 2020 Aug 10;324:280–288.
  • Lee JW, Choi S-O, Felner EI, et al. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small. 2011;7(4):531–539. doi: 10.1002/smll.201001091
  • Park J-H, Choi S-O, Kamath R, et al. Polymer particle-based micromolding to fabricate novel microstructures. Biomed Microdevices. 2007 Apr 1;9(2):223–234. doi: 10.1007/s10544-006-9024-4
  • Prausnitz MR. Microneedles for transdermal drug delivery.Adv Drug Delivery Rev. 2004 Mar 27;56(5):581–587. doi: 10.1016/j.addr.2003.10.023
  • Trautmann A, Roth G-L, Nujiqi B, et al. Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays. Microsyst Nanoeng. 2019 Feb 25;5(1):6. doi: 10.1038/s41378-019-0046-5
  • van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. 2012 Jul 20;161(2):645–655. doi: 10.1016/j.jconrel.2012.01.042
  • Xiang Z, Wang H, Pant A, et al. Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery. Biomicrofluidics. 2013;7(2):026502. doi: 10.1063/1.4798471
  • Prüss-Üstün A, Rapiti E, Hutin YJF. Sharps injuries: global burden of disease from sharps injuries to health-care workers/Annette prüss-Üstun, Elisabetta Rapiti, Yvan Hutin. EBD Series. 2003;2003:26–28.
  • Kolluru C, Gomaa Y, Prausnitz MR. Development of a thermostable microneedle patch for polio vaccination. Drug Deliv Transl Res. 2019;9(1):192–203. doi: 10.1007/s13346-018-00608-9
  • McMillan CLD, Choo JJY, Idris A, et al. Complete protection by a single-dose skin patch-delivered SARS-CoV-2 spike vaccine. Sci Adv. 2021;7(44):eabj8065. doi: 10.1126/sciadv.abj8065
  • Mistilis MJ, Bommarius AS, Prausnitz MR. Development of a thermostable microneedle patch for influenza vaccination.J Pharm Sci. 2015 Feb 1;104(2):740–749. doi: 10.1002/jps.24283
  • Wan Y, Gupta V, Bird C, et al. Formulation development and improved stability of a combination measles and rubella live-viral vaccine dried for use in the Nanopatch(TM) microneedle delivery system. Hum Vaccin Immunother. 2021 May 6;17(8):16. doi: 10.1080/21645515.2021.1887692
  • Wan Y, Hickey JM, Bird C, et al. Development of stabilizing formulations of a trivalent inactivated poliovirus vaccine in a dried state for delivery in the Nanopatch microprojection array. J Pharm Sci. 2018 Jun;107(6):1540–1551. doi: 10.1016/j.xphs.2018.01.027
  • Privor-Dumm L, Excler JL, Gilbert S, et al. Vaccine access, equity and justice: COVID-19 vaccines and vaccination. BMJ Glob Health. 2023 Jun;8(6):e011881. doi: 10.1136/bmjgh-2023-011881
  • Excler JL, Privor-Dumm L, Kim JH. Supply and delivery of vaccines for global health. Curr Opin Immunol. 2021 Aug;71:13–20. doi: 10.1016/j.coi.2021.03.009
  • Ding Z, Verbaan FJ, Bivas-Benita M, et al. Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control Release. 2009 MAY 21;136(1):71–78. doi: 10.1016/j.jconrel.2009.01.025
  • Guo L, Qiu YQ, Chen JM, et al. Effective transcutaneous immunization against hepatitis B virus by a combined approach of hydrogel patch formulation and microneedle arrays. Biomed Microdevices. 2013 Dec;15(6):1077–1085. doi: 10.1007/s10544-013-9799-z
  • Dean CH, Alarcon JB, Waterston AM, et al. Cutaneous delivery of a live, attenuated chimeric flavivirus vaccine against Japanese encephalitis (ChimeriVax (TM)-JE) in Non-human primates. Hum Vaccin. 2005 May;1(3):106–111. doi: 10.4161/hv.1.3.1797
  • Kim YC, Yoo DG, Compans RW, et al. Cross-protection by co-immunization with influenza hemagglutinin DNA and inactivated virus vaccine using coated microneedles. J Control Release. 2013 DEC 10;172(2):579–588. doi: 10.1016/j.jconrel.2013.04.016
  • Kim YC, Quan FS, Yoo DG, et al. Improved influenza vaccination in the skin using vaccine coated microneedles. Vaccine. 2009 Nov 16;27(49):6932–6938. doi: 10.1016/j.vaccine.2009.08.108
  • Kim YC, Quan FS, Compans RW, et al. Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release. 2010 Mar 3;142(2):187–195. doi: 10.1016/j.jconrel.2009.10.013
  • Jeong HR, Park S, Park JH, et al. Preparation of H1N1 microneedles by a low-temperature process without a stabilizer. Eur J Pharm Biopharm. 2019 Oct;143:1–7.
  • Depelsenaire ACI, Meliga SC, McNeilly CL, et al. Colocalization of cell death with antigen deposition in skin enhances vaccine immunogenicity. J Invest Dermatol. 2014 Sep;134(9):2361–2370. doi: 10.1038/jid.2014.174
  • Fernando GJ, Chen X, Prow TW, et al. Potent immunity to low doses of influenza vaccine by probabilistic guided micro-targeted skin delivery in a mouse model. PLoS One. 2010 Apr 21;5(4):e10266. doi: 10.1371/journal.pone.0010266
  • Fernando GJP, Hickling J, Jayashi Flores CM, et al. Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch™). Vaccine. 2018 Jun 18;36(26):3779–3788. doi: 10.1016/j.vaccine.2018.05.053
  • Forster AH, Witham K, Depelsenaire ACI, et al. Safety, tolerability, and immunogenicity of influenza vaccination with a high-density microarray patch: results from a randomized, controlled phase I clinical trial. PLOS Med. 2020;17(3):e1003024. doi: 10.1371/journal.pmed.1003024
  • Kim MC, Lee JW, Choi HJ, et al. Microneedle patch delivery to the skin of virus-like particles containing heterologous M2e extracellular domains of influenza virus induces broad heterosubtypic cross-protection. J Control Release. 2015 Jul 28;210:208–216.
  • Kim YC, Quan FS, Compans RW, et al. Formulation of microneedles coated with influenza virus-like particle vaccine. AAPS Pharm Sci Tech. 2010 Sep;11(3):1193–1201. doi: 10.1208/s12249-010-9471-3
  • Kim YC, Song JM, Lipatov AS, et al. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. Eur J Pharm Biopharm. 2012 Jun;81(2):239–247. doi: 10.1016/j.ejpb.2012.03.010
  • Kommareddy S, Baudner BC, Bonificio A, et al. Influenza subunit vaccine coated microneedle patches elicit comparable immune responses to intramuscular injection in guinea pigs. Vaccine. 2013 Jul 25;31(34):3435–3441. doi: 10.1016/j.vaccine.2013.01.050
  • Wire B Vaxxas Announces Initiation of Phase I clinical study of first needle-free COVID-19 vaccine (HexaPro) delivered using high-density microarray patch (HD-MAP): business Wire; 2022 [cited 2023 Jun 28]. Available from: https://www.businesswire.com/news/home/20221108005505/en/Vaxxas-Announces-Initiation-of-Phase-I-Clinical-Study-of-First-Needle-Free-COVID-19-Vaccine-HexaPro-Delivered-Using-High-Density-Microarray-Patch-HD-MAP
  • Wire B Vaxxas Announces Interim results from Phase I clinical study of first needle-free COVID-19 vaccine delivered using Proprietary high-density microarray patch (HD-MAP) businesswire.com: business Wire; 2023 updated 5 June 2023 [cited 2023 Jun 28]. Available from: https://www.businesswire.com/news/home/20230605005248/en/Vaxxas-Announces-Interim-Results-from-Phase-I-Clinical-Study-of-First-Needle-Free-COVID-19-Vaccine-Delivered-Using-Proprietary-High-Density-Microarray-Patch-HD-MAP
  • McMillan CLD, Amarilla AA, Modhiran N, et al. Skin-patch delivered subunit vaccine induces broadly neutralising antibodies against SARS-CoV-2 variants of concern. Vaccine. 2022 Aug 12;40(34):4929–4932. doi: 10.1016/j.vaccine.2022.07.013
  • McMillan CLD, Azuar A, Choo JJY, et al. Dermal delivery of a SARS-CoV-2 subunit vaccine induces immunogenicity against variants of concern. Vaccines. 2022;10(4):578. doi: 10.3390/vaccines10040578
  • Choo JJY, McMillan CLD, Fernando GJP, et al. Developing a stabilizing formulation of a live chimeric dengue virus vaccine dry coated on a high-density microarray patch. Vaccines. 2021;9(11):1301. doi: 10.3390/vaccines9111301
  • Choo JJY, Vet LJ, McMillan CLD, et al. A chimeric dengue virus vaccine candidate delivered by high density microarray patches protects against infection in mice. NPJ Vaccines. 2021 May 7;6(1):66. doi: 10.1038/s41541-021-00328-1
  • Muller DA, Depelsenaire ACI, Shannon AE, et al. Efficient delivery of dengue virus subunit vaccines to the skin by Microprojection Arrays. Vaccines. 2019 Nov 20;7(4):189–202. doi: 10.3390/vaccines7040189
  • Corbett HJ, Fernando GJ, Chen X, et al. Skin vaccination against cervical cancer associated human papillomavirus with a novel micro-projection array in a mouse model. PLoS One. 2010 Oct 18;5(10):e13460. doi: 10.1371/journal.pone.0013460
  • Kines RC, Zarnitsyn V, Johnson TR, et al. Vaccination with human papillomavirus pseudovirus-encapsidated plasmids targeted to skin using microneedles. PLoS One. 2015 Mar 18;10(3): doi: 10.1371/journal.pone.0120797
  • Edens C, Collins ML, Ayers J, et al. Measles vaccination using a microneedle patch. Vaccine. 2013 Jul 25;31(34):3403–3409. doi: 10.1016/j.vaccine.2012.09.062
  • Edens C, Collins ML, Goodson JL, et al. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine. 2015;33(37):4712–4718. doi: 10.1016/j.vaccine.2015.02.074
  • Gill HS, Soderholm J, Prausnitz MR, et al. Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther. 2010 Jun;17(6):811–814. doi: 10.1038/gt.2010.22
  • Kask AS, Chen X, Marshak JO, et al. DNA vaccine delivery by densely-packed and short microprojection arrays to skin protects against vaginal HSV-2 challenge. Vaccine. 2010 Nov 3;28(47):7483–7491. doi: 10.1016/j.vaccine.2010.09.014
  • Liu Y, Ye L, Lin F, et al. Intradermal immunization by Ebola virus GP subunit vaccines using microneedle patches protects mice against lethal EBOV challenge. Sci Rep. 2018 Jul 25;8. doi: 10.1038/s41598-018-29135-w
  • Moon S, Wang YH, Edens C, et al. Dose sparing and enhanced immunogenicity of inactivated rotavirus vaccine administered by skin vaccination using a microneedle patch. Vaccine. 2013 JUL 25;31(34):3396–3402.
  • Muller DA, Fernando GJP, Owens NS, et al. High-density microprojection array delivery to rat skin of low doses of trivalent inactivated poliovirus vaccine elicits potent neutralising antibody responses. Sci Rep. 2017 Oct 3;7(1):12644. doi: 10.1038/s41598-017-13011-0
  • Muller DA, Pearson FE, Fernando GJ, et al. Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses. Sci Rep. 2016 Feb 25;6(1):22094. doi: 10.1038/srep22094
  • van der Maaden K, Sekerdag E, Schipper P, et al. Layer-by-layer assembly of inactivated poliovirus and N-Trimethyl chitosan on pH-Sensitive microneedles for dermal vaccination. Langmuir. 2015 Aug 11;31(31):8654–8660. doi: 10.1021/acs.langmuir.5b01262
  • Park S, Lee Y, Kwon YM, et al. Vaccination by microneedle patch with inactivated respiratory syncytial virus and monophosphoryl lipid a enhances the protective efficacy and diminishes inflammatory disease after challenge. PLoS One. 2018 Oct 26;13(10): doi: 10.1371/journal.pone.0205071
  • Prow TW, Chen X, Prow NA, et al. Nanopatch-targeted skin vaccination against West Nile virus and Chikungunya virus in mice. Small. 2010 Aug 16;6(16):1776–1784. doi: 10.1002/smll.201000331
  • Zhu WD, Pewin W, Wang C, et al. A boosting skin vaccination with dissolving microneedle patch encapsulating M2e vaccine broadens the protective efficacy of conventional influenza vaccines. J Control Release. 2017 Sep 10;261:1–9.
  • Bonificio A, Ghartey-Tagoe E, Gallorini S, et al. Fabrication of cell culture-derived influenza vaccine dissolvable microstructures and evaluation of immunogenicity in guinea pigs. Vaccine. 2015 Jun 9;33(25):2930–2938. doi: 10.1016/j.vaccine.2015.04.059
  • Kommareddy S, Baudner BC, Oh S, et al. Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. J Pharm Sci. 2012 Mar;101(3):1021–1027. doi: 10.1002/jps.23019
  • Nakatsukasa A, Kuruma K, Okamatsu M, et al. Potency of whole virus particle and split virion vaccines using dissolving microneedle against challenges of H1N1 and H5N1 influenza viruses in mice. Vaccine. 2017 May 15;35(21):2855–2861. doi: 10.1016/j.vaccine.2017.04.009
  • Raphael AP, Prow TW, Crichton ML, et al. Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. Small. 2010 Aug 16;6(16):1785–1793. doi: 10.1002/smll.201000326
  • Sullivan SP, Koutsonanos DG, Del Pilar Martin M, et al. Dissolving polymer microneedle patches for influenza vaccination [10.1038/nm.2182]. Nat Med. 2010 08//print;16(8):915–920. doi: 10.1038/nm.2182
  • Vassilieva EV, Kalluri H, McAllister D, et al. Improved immunogenicity of individual influenza vaccine components delivered with a novel dissolving microneedle patch stable at room temperature. Drug Deliv Transl Res. 2015 Aug;5(4):360–371. doi: 10.1007/s13346-015-0228-0
  • Vrdoljak A, Allen EA, Ferrara F, et al. Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods. J Control Release. 2016 Mar 10;225:192–204.
  • Wang J, Li B, Wu MX. Effective and lesion-free cutaneous influenza vaccination. Proc Natl Acad Sci. 2015 APR 21;112(16):5005–5010.
  • Rouphael NG, Paine M, Mosley R, et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet. 2017 Aug 12;390(10095):649–658. doi: 10.1016/S0140-6736(17)30575-5
  • Hirobe S, Azukizawa H, Hanafusa T, et al. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials. 2015 JUL;57:50–58.
  • Arya JM, Dewitt K, Scott-Garrard M, et al. Rabies vaccination in dogs using a dissolving microneedle patch. J Control Release. 2016 Oct 10;239:19–26.
  • Beaver JT, Mills LK, Swieboda D, et al. Cutaneous vaccination ameliorates Zika virus-induced neuro-ocular pathology via reduction of anti-ganglioside antibodies. Hum Vaccin Immunother. 2020 Sep 1;16(9):2072–2091. doi: 10.1080/21645515.2020.1775460
  • Kim E, Erdos G, Huang S, et al. Preventative vaccines for Zika virus outbreak: preliminary Evaluation. EBioMedicine. 2016;13:315–320. doi: 10.1016/j.ebiom.2016.09.028
  • Christiansen D, Earnest-Silveira L, Grubor-Bauk B, et al. Pre-clinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Sci Rep. 2019 Jun 25;9. doi: 10.1038/s41598-019-45461-z
  • Donadei A, Kraan H, Ophorst O, et al. Skin delivery of trivalent Sabin inactivated poliovirus vaccine using dissolvable microneedle patches induces neutralizing antibodies. J Control Release. 2019 Oct;311:96–103.
  • Edens C, Dybdahl-Sissoko NC, Weldon WC, et al. Inactivated polio vaccination using a microneedle patch is immunogenic in the rhesus macaque. Vaccine. 2015 Sep 8;33(37):4683–4690. doi: 10.1016/j.vaccine.2015.01.089
  • Joyce JC, Carroll TD, Collins ML, et al. A microneedle patch for measles and rubella vaccination is immunogenic and protective in infant rhesus macaques. J Infect Dis. 2018 Jul 1;218(1):124–132. doi: 10.1093/infdis/jiy139
  • Kim E, Erdos G, Huang SH, et al. Microneedle array delivered recombinant coronavirus vaccines: immunogenicity and rapid translational development. EBioMedicine. 2020 May;55. doi: 10.1016/j.ebiom.2020.102743
  • Patil S, Vijayanand S, Joshi D, et al. Subunit microparticulate vaccine delivery using microneedles trigger significant SARS-spike-specific humoral and cellular responses in a preclinical murine model. Int J Pharm. 2023 Feb 5;632:122583. doi: 10.1016/j.ijpharm.2023.122583
  • Pattani A, McKay PF, Garland MJ, et al. Microneedle mediated intradermal delivery of adjuvanted recombinant HIV-1 CN54gp140 effectively primes mucosal boost inoculations. J Control Release. 2012 Sep 28;162(3):529–537. doi: 10.1016/j.jconrel.2012.07.039
  • Zaric M, Becker PD, Hervouet C, et al. Skin immunisation activates an innate lymphoid cell-monocyte axis regulating CD8(+) effector recruitment to mucosal tissues. Nat Commun. 2019 May 17;10(1): doi: 10.1038/s41467-019-09969-2
  • Boopathy AV, Mandal A, Kulp DW, et al. Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proc Natl Acad Sci. 2019;116(33):16473–16478. doi: 10.1073/pnas.1902179116
  • Zaric M, Becker PD, Hervouet C, et al. Long-lived tissue resident HIV-1 specific memory CD8(+) T cells are generated by skin immunization with live virus vectored microneedle arrays. J Control Release. 2017 Dec 28;268:166–175.
  • Perez Cuevas MB, Kodani M, Choi Y, et al. Hepatitis B vaccination using a dissolvable microneedle patch is immunogenic in mice and rhesus macaques. Bioeng Transl Med. 2018;3(3):186–196. doi: 10.1002/btm2.10098
  • Poirier D, Renaud F, Dewar V, et al. Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable. Biomaterials. 2017 Nov;145:256–265.
  • Choi Y, Lee GS, Li S, et al. Hepatitis B vaccine delivered by microneedle patch: immunogenicity in mice and rhesus macaques. Vaccine. 2023 Jun 1;41(24):3663–3672. doi: 10.1016/j.vaccine.2023.05.005
  • Zheng X, Zhu J, Zheng C, et al. Dissolving microneedle arrays as a hepatitis B vaccine delivery system adjuvanted by APC-Targeted poly (lactic-co-glycolic acid) (PLGA) nanoparticles. AAPS Pharm Sci Tech. 2023 Jan 25;24(1):42. doi: 10.1208/s12249-022-02473-9
  • Qiu YQ, Guo L, Zhang SH, et al. DNA-based vaccination against hepatitis B virus using dissolving microneedle arrays adjuvanted by cationic liposomes and CpG ODN. Drug Deliv. 2016 Sep;23(7):2391–2398. doi: 10.3109/10717544.2014.992497
  • Turvey ME, Uppu DSSM, Mohamed Sharif AR, et al. Microneedle-based intradermal delivery of stabilized dengue virus. Bioeng Transl Med. 2019;4(2):e10127. doi: 10.1002/btm2.10127
  • Yang HW, Ye L, Guo XD, et al. Ebola vaccination using a DNA vaccine coated on PLGA-PLL/gamma PGA nanoparticles administered using a microneedle patch. Adv Healthc Mater. 2017 Jan;6(1). doi: 10.1002/adhm.201600750
  • Romanyuk A, Wang R, Marin A, et al. Skin vaccination with Ebola virus glycoprotein using a polyphosphazene-based microneedle patch protects Mice against lethal challenge. J Funct Biomater. 2022 Dec 27;14(1):16. doi: 10.3390/jfb14010016
  • Biomedical M Micron Biomedical Announces positive measles and rubella vaccination results from first clinical trial of microarray injection-free vaccine delivery in children: Micron Biomedical; 2023 updated 17 May 2023. cited 2023 Jun 29. Available from: https://www.micronbiomedical.com/positive-measles-rubella
  • Adigweme I, Akpalu E, Yisa M, et al. Study protocol for a phase 1/2, single-centre, double-blind, double-dummy, randomized, active-controlled, age de-escalation trial to assess the safety, tolerability and immunogenicity of a measles and rubella vaccine delivered by a microneedle patch in healthy adults (18 to 40 years), measles and rubella vaccine-primed toddlers (15 to 18 months) and measles and rubella vaccine-naïve infants (9 to 10 months) in the Gambia [measles and rubella vaccine microneedle patch Phase 1/2 age De-escalation trial]. Trials. 2022 Sep 14;23(1):775. doi: 10.1186/s13063-022-06493-5
  • Iwata H, Kakita K, Imafuku K, et al. Safety and dose-sparing effect of Japanese encephalitis vaccine administered by microneedle patch in uninfected, healthy adults (MNA-J): a randomised, partly blinded, active-controlled, phase 1 trial. Lancet Microbe. 2022 Feb 1;3(2):e96–e104. doi: 10.1016/S2666-5247(21)00269-X
  • Ogai N, Nonaka I, Toda Y, et al. Enhanced immunity in intradermal vaccination by novel hollow microneedles. Skin Res Technol. 2018 Nov;24(4):630–635. doi: 10.1111/srt.12576
  • Schipper P, van der Maaden K, Romeijn S, et al. Repeated fractional intradermal dosing of an inactivated polio vaccine by a single hollow microneedle leads to superior immune responses. J Control Release. 2016 Nov 28;242:141–147.
  • van der Maaden K, Trietsch SJ, Kraan H, et al. Novel hollow microneedle technology for depth-controlled microinjection-mediated dermal vaccination: a study with polio vaccine in Rats. Pharm Res. 2014 Jul;31(7):1846–1854. doi: 10.1007/s11095-013-1288-9
  • Prins MLM, Prins C, de Vries JJC, et al. Establishing immunogenicity and safety of needle-free intradermal delivery by nanoporous ceramic skin patch of mRNA SARS-CoV-2 vaccine as a revaccination strategy in healthy volunteers. Virus Res. 2023 Sep;334:199175.
  • Korkmaz E, Balmert SC, Carey CD, et al. Emerging skin-targeted drug delivery strategies to engineer immunity: a focus on infectious diseases. Expert Opin Drug Deliv. 2021 Feb 1;18(2):151–167. doi: 10.1080/17425247.2021.1823964
  • Korkmaz E, Balmert SC, Sumpter TL, et al. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Delivery Rev. 2021 Apr 1;171:164–186.
  • van der Straeten A, Sarmadi M, Daristotle JL, et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat Biotechnol. 2023 Apr 24. doi: 10.1038/s41587-023-01774-z
  • Bae WG, Ko H, So JY, et al. Snake fang-inspired stamping patch for transdermal delivery of liquid formulations. Sci Transl Med. 2019 Jul 31;11(503): doi: 10.1126/scitranslmed.aaw3329
  • Balmert SC, Carey CD, Falo GD, et al. Dissolving undercut microneedle arrays for multicomponent cutaneous vaccination. J Control Release. 2020 Jan 10;317:336–346.
  • Bediz B, Korkmaz E, Khilwani R, et al. Dissolvable microneedle arrays for intradermal delivery of biologics: fabrication and application. Pharm Res. 2014 Jan;31(1):117–135. doi: 10.1007/s11095-013-1137-x
  • Crichton ML, Muller DA, Depelsenaire ACI, et al. The changing shape of vaccination: improving immune responses through geometrical variations of a microdevice for immunization. Sci Rep. 2016 Jun 2;6(1):27217. doi: 10.1038/srep27217
  • Johnson AR, Caudill CL, Tumbleston JR, et al. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS One. 2016 Sep 8;11(9): doi: 10.1371/journal.pone.0162518
  • Kim MJ, Park SC, Rizal B, et al. Fabrication of Circular Obelisk-type Multilayer microneedles using micro-milling and spray deposition. Front Bioeng Biotechnol. 2018 May 11;6. doi: 10.3389/fbioe.2018.00054
  • Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Delivery Rev. 2012 Nov;64(14):1547–1568. doi: 10.1016/j.addr.2012.04.005
  • Gupta J, Gupta R, Vanshita R. Microneedle technology: an insight into recent advancements and future trends in drug and vaccine delivery.Assay Drug Dev Technol. 2020 Mar 1;19(2):97–114. doi: 10.1089/adt.2020.1022
  • Tariq N, Ashraf MW, Tayyaba S. A review on solid microneedles for Biomedical applications.J Pharm Innov. 2022 Dec 1;17(4):1464–1483. doi: 10.1007/s12247-021-09586-x
  • Dean CH, Alarcon JB, Waterston AM, et al. Cutaneous delivery of a live, attenuated chimeric flavivirus vaccines against Japanese encephalitis (ChimeriVaxTM-JE) in Non-human primates. Hum Vaccines. 2005 May 1;1(3):106–111. doi: 10.4161/hv.1.3.1797
  • Gill HS, Andrews SN, Sakthivel SK, et al. Selective removal of stratum corneum by microdermabrasion to increase skin permeability. Eur J Pharm Sci. 2009 Sep 10;38(2):95–103. doi: 10.1016/j.ejps.2009.06.004
  • Mikszta JA, Alarcon JB, Brittingham JM, et al. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med. 2002 Apr 1;8(4):415–419. doi: 10.1038/nm0402-415
  • Pearton M, Kang S-M, Song J-M, et al. Influenza virus-like particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin. Vaccine. 2010 Aug 23;28(37):6104–6113. doi: 10.1016/j.vaccine.2010.05.055
  • Henry S, McAllister DV, Allen MG, et al. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998 Aug;87(8):922–925.
  • Iliescu F, Dumitrescu-Ionescu D, Petrescu M, et al. A review on transdermal drug delivery using microneedles: Current research and perspective. Ann Acad Rom Sci. 2014 Jul 01;7:7–34.
  • DeMuth PC, Li AV, Abbink P, et al. Vaccine delivery with microneedle skin patches in nonhuman primates. Nat Biotechnol. 2013 Dec;31(12):1082–1085. doi: 10.1038/nbt.2759
  • Fernando GJ, Chen X, Primiero CA, et al. Nanopatch targeted delivery of both antigen and adjuvant to skin synergistically drives enhanced antibody responses. J Control Release. 2012 Apr 30;159(2):215–221. doi: 10.1016/j.jconrel.2012.01.030
  • Muller DA, Henricson J, Baker SB, et al. Innate local response and tissue recovery following application of high density microarray patches to human skin. Sci Rep. 2020 Oct 28;10(1):18468. doi: 10.1038/s41598-020-75169-4
  • Ng HI, Fernando GJ, Kendall MA. Induction of potent CD8(+) T cell responses through the delivery of subunit protein vaccines to skin antigen-presenting cells using densely packed microprojection arrays. J Control Release. 2012 Sep 28;162(3):477–484. doi: 10.1016/j.jconrel.2012.07.024
  • Quan FS, Kim YC, Compans RW, et al. Dose sparing enabled by skin immunization with influenza virus-like particle vaccine using microneedles. J Control Release. 2010 Nov 1;147(3):326–332. doi: 10.1016/j.jconrel.2010.07.125
  • Quan FS, Kim YC, Song JM, et al. Long-term protective immunity from an influenza virus-like particle vaccine administered with a microneedle patch. Clin Vaccine Immunol. 2013 Sep;20(9):1433–1439. doi: 10.1128/CVI.00251-13
  • Weldon WC, Martin MP, Zarnitsyn V, et al. Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity. Clin Vaccine Immunol. 2011 Apr;18(4):647–654. doi: 10.1128/CVI.00435-10
  • Zhu QY, Zarnitsyn VG, Ye L, et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Natl Acad Sci. 2009 May 12;106(19):7968–7973. doi: 10.1073/pnas.0812652106
  • Pearson FE, Muller DA, Roalfe L, et al. Functional anti-polysaccharide IgG titres induced by unadjuvanted pneumococcal-conjugate vaccine when delivered by microprojection-based skin patch. Vaccine. 2015 Nov 27;33(48):6675–6683. doi: 10.1016/j.vaccine.2015.10.081
  • Henricson J, Muller DA, Baker SB, et al. Micropuncture closure following high density microarray patch application in healthy subjects. Skin Res Technol. 2022;28(2):305–310. doi: 10.1111/srt.13131
  • Al-Japairai KAS, Mahmood S, Almurisi SH, et al. Current trends in polymer microneedle for transdermal drug delivery. Int J Pharm. 2020 Sep;25:587.
  • Larraneta E, Lutton REM, Woolfson AD, et al. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016 Jun;104:1–32.
  • Boopathy AV, Mandal A, Kulp DW, et al. Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proc Nat Acad Sci. 2019;116(33):16473–16478. doi: 10.1073/pnas.1902179116
  • Hirobe S, Azukizawa H, Matsuo K, et al. Development and clinical study of a self-dissolving microneedle patch for transcutaneous immunization device. Pharm Res. 2013 Oct 1;30(10):2664–2674. doi: 10.1007/s11095-013-1092-6
  • Moore LE, Vucen S, Moore AC. Trends in drug- and vaccine-based dissolvable microneedle materials and methods of fabrication. Eur J Pharm Biopharm. 2022 Apr 1;173:54–72. doi: 10.1016/j.ejpb.2022.02.013
  • Vassilieva EV, Li S, Korniychuk H, et al. cGamp/saponin adjuvant combination improves protective response to influenza vaccination by microneedle patch in an aged mouse model [original research]. Front Immunol. 2021 Feb 2;11:11.
  • Chen MC, Lai KY, Ling MH, et al. Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan microneedles with a patch-dissolvable design. Acta Biomaterialia. 2018 Jan;65:66–75.
  • Zaric M, Lyubomska O, Poux C, et al. Dissolving microneedle delivery of nanoparticle-encapsulated antigen elicits efficient cross-priming and Th1 immune responses by murine langerhans cells. J Invest Dermatol. 2015 Feb;135(2):425–434. doi: 10.1038/jid.2014.415
  • Paredes AJ, McKenna PE, Ramoller IK, et al. Microarray patches: poking a hole in the challenges faced when delivering poorly soluble drugs. Adv Funct Mater. 2021 Jan;31(1). doi: 10.1002/adfm.202005792
  • Vinayakumar KB, Kulkarni PG, Nayak MM, et al. A hollow stainless steel microneedle array to deliver insulin to a diabetic rat. J Micromech Microeng. 2016 Jun;26(6):065013. doi: 10.1088/0960-1317/26/6/065013
  • Cárcamo-Martínez Á, Mallon B, Domínguez-Robles J, et al. Hollow microneedles: a perspective in biomedical applications. Int J Pharm. 2021 Apr 15;599:120455.
  • Du G, Hathout RM, Nasr M, et al. Intradermal vaccination with hollow microneedles: a comparative study of various protein antigen and adjuvant encapsulated nanoparticles. J Control Release. 2017 Nov 28;266:109–118.
  • Niu L, Chu LY, Burton SA, et al. Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response. J Control Release. 2019 Jan 28;294:268–278.
  • Du G, Woythe L, van der Maaden K, et al. Coated and hollow microneedle-mediated intradermal immunization in Mice with diphtheria toxoid loaded mesoporous silica nanoparticles. Pharm Res. 2018 Aug 13;35(10):189. doi: 10.1007/s11095-018-2476-4
  • Norman JJ, Brown MR, Raviele NA, et al. Faster pharmacokinetics and increased patient acceptance of intradermal insulin delivery using a single hollow microneedle in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2013;14(6):459–465. doi: 10.1111/pedi.12031
  • Norman JJ, Choi S-O, Tong NT, et al. Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition. Biomed Microdevices. 2013 Apr 1;15(2):203–210. doi: 10.1007/s10544-012-9717-9
  • Al-Kasasbeh R, Brady AJ, Courtenay AJ, et al. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Deliv Transl Res. 2020 Jun;10(3):690–705. doi: 10.1007/s13346-020-00727-2
  • Donnelly RF, Singh TRR, Garland MJ, et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater. 2012 Dec 5;22(23):4879–4890. doi: 10.1002/adfm.201200864
  • Turner JG, White LR, Estrela P, et al. Hydrogel-forming microneedles: Current advancements and future trends. Macromol biosci. 2021;21(2):2000307. doi: 10.1002/mabi.202000307
  • Ingrole RSJ, Gill HS. Microneedle coating methods: a review with a perspective. J Pharmacol Exp Ther. 2019 Sep;370(3):555–569. doi: 10.1124/jpet.119.258707
  • Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007 Feb 12;117(2):227–237. doi: 10.1016/j.jconrel.2006.10.017
  • Chen X, Corbett HJ, Yukiko SR, et al. Site-Selectively coated, densely-packed microprojection array patches for targeted delivery of vaccines to skin. Adv Funct Mater. 2011;21(3):464–473. doi: 10.1002/adfm.201000966
  • Chen X, Fernando GJP, Crichton ML, et al. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J Control Release. 2011 6/30;152(3):349–355. doi: 10.1016/j.jconrel.2011.02.026
  • Vrdoljak A, McGrath MG, Carey JB, et al. Coated microneedle arrays for transcutaneous delivery of live virus vaccines. J Control Release. 2012 Apr 10;159(1):34–42. doi: 10.1016/j.jconrel.2011.12.026
  • Prausnitz MR, Goodson JL, Rota PA, et al. A microneedle patch for measles and rubella vaccination: a game changer for achieving elimination. Curr Opin Virol. 2020 Apr;41:68–76.
  • Quan FS, Kim YC, Vunnava A, et al. Intradermal vaccination with influenza virus-like particles by using microneedles induces protection superior to that with intramuscular immunization. J Virol. 2010 Aug;84(15):7760–7769. doi: 10.1128/JVI.01849-09
  • Caudill C, Perry JL, Iliadis K, et al. Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity. Proc Natl Acad Sci. 2021;118(39):e2102595118. doi: 10.1073/pnas.2102595118
  • Forster A, Junger M. Opportunities and challenges for commercializing microarray patches for vaccination from a MAP developer’s perspective.Hum Vaccin Immunother. 2022 Nov 30;18(4):2050123. doi: 10.1080/21645515.2022.2050123
  • Davies C, Taba M, Deng L, et al. Usability, acceptability, and feasibility of a high-density microarray patch (HD-MAP) applicator as a delivery method for vaccination in clinical settings. Hum Vaccin Immunother. 2022 Nov 30;18(4):2018863. doi: 10.1080/21645515.2021.2018863
  • MfIa S. Propelling Australian electric planes minister.Industry.gov.au: Minister for industry and science; 2023 updated 19 January 2023 cited 2023 Jun 28. Available from: https://www.minister.industry.gov.au/ministers/husic/media-releases/propelling-australian-electric-planes
  • Government A CRC projects selection round outcomes business.Gov.au: Australian Government; 2023 updated 20 February 2023 [cited 2023 Jun 28]. Available from: https://business.gov.au/grants-and-programs/cooperative-research-centres-projects-crcp-grants/crc-projects-selection-round-outcomes
  • Leone M, Monkare J, Bouwstra J, et al. Dissolving microneedle patches for dermal vaccination. Pharm Res. 2017 Nov;34(11):2223–2240. doi: 10.1007/s11095-017-2223-2
  • DeMuth PC, Min Y, Irvine DJ, et al. Implantable silk composite microneedles for programmable vaccine release kinetics and enhanced immunogenicity in transcutaneous immunization. Adv Healthc Mater. 2014;3(1):47–58. doi: 10.1002/adhm.201300139
  • Kang G, Kim M, Yang H, et al. Latch applicator for efficient delivery of dissolving microneedles based on Rapid Release of Elastic strain Energy by thumb force. Adv Funct Mater. 2023;33(11):2210805. doi: 10.1002/adfm.202210805
  • Paik S-J, Byun S, Lim J-M, et al. In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems. Sens Actuators A. 2004 Sep 1];114(2):276–284. doi: 10.1016/j.sna.2003.12.029
  • Cui Q, Liu C, Zha XF. Study on a piezoelectric micropump for the controlled drug delivery system.Microfluid Nanofluidics. [2007 Aug 1;3(4):377–390. doi: 10.1007/s10404-006-0137-0
  • Tuan-Mahmood T-M, McCrudden MTC, Torrisi BM, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5):623–637. doi: 10.1016/j.ejps.2013.05.005
  • Pamornpathomkul B, Niyomtham N, Yingyongnarongkul BE, et al. Cationic niosomes for enhanced skin immunization of plasmid DNA-Encoding ovalbumin via hollow microneedles. AAPS Pharm Sci Tech. 2018 Jan;19(1):481–488. doi: 10.1208/s12249-017-0855-5
  • Samant PP, Prausnitz MR. Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proc Natl Acad Sci U S A. 2018 May 1;115(18):4583–4588. doi: 10.1073/pnas.1716772115
  • Romanyuk AV, Zvezdin VN, Samant P, et al. Collection of analytes from microneedle patches. Anal Chem. 2014 Nov 4;86(21):10520–10523. doi: 10.1021/ac503823p
  • Chang H, Zheng M, Yu X, et al. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv Mater. 2017;29(37):1702243. doi: 10.1002/adma.201702243
  • Caffarel-Salvador E, Brady AJ, Eltayib E, et al. Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in Diagnosis and Therapeutic drug Monitoring. PLoS One. 2015;10(12):e0145644. doi: 10.1371/journal.pone.0145644
  • Kearney MC, Caffarel-Salvador E, Fallows SJ, et al. Microneedle-mediated delivery of donepezil: potential for improved treatment options in Alzheimer’s disease. Eur J Pharm Biopharm. 2016 Jun;103:43–50.
  • Courtenay AJ, McAlister E, McCrudden MTC, et al. Hydrogel-forming microneedle arrays as a therapeutic option for transdermal esketamine delivery. J Control Release. 2020 Jun 10;322:177–186. doi: 10.1016/j.jconrel.2020.03.026
  • Shi Y, Truong VX, Kulkarni K, et al. Light-triggered release of ciprofloxacin from an in situ forming click hydrogel for antibacterial wound dressings. J Mater Chem B. 2015 Dec 7;3(45):8771–8774. doi: 10.1039/C5TB01820J
  • Courtenay AJ, McCrudden MTC, McAvoy KJ, et al. Microneedle-mediated transdermal delivery of Bevacizumab. Mol Pharm. [2018 Aug 6];15(8):3545–3556. doi: 10.1021/acs.molpharmaceut.8b00544
  • Cárcamo-Martínez Á, Domínguez-Robles J, Mallon B, et al. Potential of polymeric films loaded with gold nanorods for local hyperthermia applications. Nanomaterials. 2020;10(3):582. doi: 10.3390/nano10030582
  • Barnum L, Samandari M, Schmidt TA, et al. Microneedle arrays for the treatment of chronic wounds. Expert Opin Drug Deliv. 2020 Dec;17(12):1767–1780. doi: 10.1080/17425247.2020.1819787
  • Carter D, van Hoeven N, Baldwin S, et al. The adjuvant GLA-AF enhances human intradermal vaccine responses. Sci Adv. 2018 Sep;4(9):eaas9930. doi: 10.1126/sciadv.aas9930
  • Erdos G, Balmert SC, Carey CD, et al. Improved Cutaneous genetic immunization by microneedle array delivery of an adjuvanted adenovirus vaccine. J Invest Dermatol. 2020 Dec;140(12):2528±. doi: 10.1016/j.jid.2020.03.966
  • Shin JH, Lee JH, Jeong SD, et al. C-di-GMP with influenza vaccine showed enhanced and shifted immune responses in microneedle vaccination in the skin. Drug Deliv Transl Res. 2020 Jun;10(3):815–825. doi: 10.1007/s13346-020-00728-1
  • Weldon WC, Zarnitsyn VG, Esser ES, et al. Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine. PLoS One. 2012 Jul 25;7(7):e41501. doi: 10.1371/journal.pone.0041501
  • Zhou Q, Wang F, Yang F, et al. Augmented humoral and cellular immune response of hepatitis B virus DNA vaccine by micro-needle vaccination using Flt3L as an adjuvant. Vaccine. 2010 Feb 3;28(5):1357–1362. doi: 10.1016/j.vaccine.2009.11.006
  • Stertman L, Palm AE, Zarnegar B, et al. The Matrix-M™ adjuvant: a critical component of vaccines for the 21(st) century. Hum Vaccin Immunother. 2023 Dec 31;19(1):2189885. doi: 10.1080/21645515.2023.2189885
  • Jackson S, Lentino J, Kopp J, et al. Immunogenicity of a two-dose investigational hepatitis B vaccine, HBsAg-1018, using a toll-like receptor 9 agonist adjuvant compared with a licensed hepatitis B vaccine in adults. Vaccine. 2018 Jan 29;36(5):668–674. doi: 10.1016/j.vaccine.2017.12.038
  • Ng H-I, Tuong ZK, Fernando GJP, et al. Microprojection arrays applied to skin generate mechanical stress, induce an inflammatory transcriptome and cell death, and improve vaccine-induced immune responses. NPJ Vaccines. 2019 Oct 11;4(1):41. doi: 10.1038/s41541-019-0134-4
  • Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Delivery Rev. 2012 Nov;64(14):1547–1568. doi: 10.1016/j.addr.2012.04.005
  • Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv. 2010 May;17(4):187–207. doi: 10.3109/10717541003667798
  • Márquez-Graña C, Bryan K, Vucen S, et al. Development of a novel single-use microneedle design platform for increased patient compliance. Procedia Manuf. 2017 Jan 1;13:1352–1359.
  • Baker B, Hacker E, Siller G, et al. Evaluation of the self-administration potential of high-density microarray patches to human skin: a preliminary study. Hum Vaccin Immunother. 2023 Mar 22;19(1):2189409. doi: 10.1080/21645515.2023.2189409
  • Kim JS, J-A C, Kim JC, et al. Microneedles with dual release pattern for improved immunological efficacy of hepatitis B vaccine. Int J Pharm. 2020Dec 15;591:119928.
  • Na YG, Kim M, Han M, et al. Characterization of hepatitis B surface antigen loaded Polylactic acid-based microneedle and its dermal safety profile. Pharmaceutics. 2020 Jun 9;12(6):531. doi: 10.3390/pharmaceutics12060531
  • Donnelly RF, Singh TRR, Tunney MM, et al. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res. 2009 Nov;26(11):2513–2522. doi: 10.1007/s11095-009-9967-2
  • Iredahl F, Muller DA, Togö T, et al. Local response and barrier recovery in elderly skin following the application of high-density microarray patches. Vaccines (Basel). [2022 Apr 10];10(4):583. doi: 10.3390/vaccines10040583
  • Crommelin DJA, Anchordoquy TJ, Volkin DB, et al. Addressing the cold reality of mRNA vaccine stability. J Pharm Sci. 2021 Mar 1;110(3):997–1001. doi: 10.1016/j.xphs.2020.12.006
  • Arya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Control Release. 2016 Oct 28;240:135–141. doi: 10.1016/j.jconrel.2015.11.019
  • Marshall S, Sahm LJ, Moore AC. The success of microneedle-mediated vaccine delivery into skin. Hum Vaccin Immunother. 2016;12(11):2975–2983. doi: 10.1080/21645515.2016.1171440
  • Goodson JL, Rota PA. Innovations in vaccine delivery: increasing access, coverage, and equity and lessons learnt from measles and rubella elimination.Drug Deliv Transl Res. 2022 May 1;12(5):959–967. doi: 10.1007/s13346-022-01130-9
  • Gavi. The vaccine innovation prioritisation strategy (VIPS) 2021 updated 30 June 2021 cited 2023 Jul 13. Available from: https://www.gavi.org/our-alliance/market-shaping/vaccine-innovation-prioritisation-strategy
  • Norman JJ, Arya JM, McClain MA, et al. Microneedle patches: usability and acceptability for self-vaccination against influenza. Vaccine. 2014 Apr 1;32(16):1856–1862. doi: 10.1016/j.vaccine.2014.01.076
  • Arya J, Henry S, Kalluri H, et al. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials. 2017 Jun;128:1–7.
  • Frew PM, Paine MB, Rouphael N, et al. Acceptability of an inactivated influenza vaccine delivered by microneedle patch: results from a phase I clinical trial of safety, reactogenicity, and immunogenicity. Vaccine. 2020 Oct 21;38(45):7175–7181. doi: 10.1016/j.vaccine.2020.07.064