2,368
Views
1
CrossRef citations to date
0
Altmetric
Review

Glycoconjugate vaccines against antimicrobial resistant pathogens

, , , & ORCID Icon
Pages 1055-1078 | Received 17 Jul 2023, Accepted 20 Oct 2023, Published online: 08 Nov 2023

References

  • Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0
  • Micoli F, Bagnoli F, Rappuoli R, et al. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 2021 May;19(5):287–302. doi: 10.1038/s41579-020-00506-3
  • RAND E. How drug resistant infections are undermining modern medicine and why more research is needed now. London: Wellcome Trust; 2021.
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. doi: 10.1016/S1473-3099(17)30753-3
  • Vekemans J, Hasso-Agopsowicz M, Kang G, et al. Leveraging vaccines to reduce antibiotic use and prevent antimicrobial resistance: a World health organization action framework. Clin Infect Dis. 1017 [2021 Aug 16];73(4):e1011–e. doi: 10.1093/cid/ciab062
  • Ladhani SN, Collins S, Djennad A, et al. Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and wales, 2000-17: a prospective national observational cohort study. Lancet Infect Dis. 2018;18(4):441–451. doi: 10.1016/S1473-3099(18)30052-5
  • Chandler T, Furmanek S, Carrico R, et al. 23-Valent Pneumococcal Polysaccharide Vaccination Does Not Prevent Community-Acquired Pneumonia Hospitalizations Due to Vaccine-Type Streptococcus pneumoniae. Microorganisms. 2022 Mar 4;10(3):560. doi: 10.3390/microorganisms10030560
  • Hoelzer K, Bielke L, Blake DP, et al. Vaccines as alternatives to antibiotics for food producing animals. Part 1: challenges and needs. Vet Res. 2018 Jul 31;49(1):64. doi: 10.1186/s13567-018-0560-8
  • Frost I, Sati H, Garcia-Vello P, et al. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe. 2022;4(2):e113–e125. doi: 10.1016/S2666-5247(22)00303-2
  • Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev. 2018;42(3):388–423. doi: 10.1093/femsre/fuy011
  • Rappuoli R. Glycoconjugate vaccines: Principles and mechanisms. Sci Transl Med. 2018 Aug 29;10(456). doi: 10.1126/scitranslmed.aat4615
  • Stefanetti G, Borriello F, Richichi B, et al. Immunobiology of carbohydrates: implications for novel vaccine and adjuvant design against infectious diseases [review]. Front Cell Infect Microbiol. 2022 Jan 18;11:11.
  • Luong P, Dube DH. Dismantling the bacterial glycocalyx: chemical tools to probe, perturb, and image bacterial glycans. Bioorg Med Chem. 2021 Jul 15;42:116268. doi: 10.1016/j.bmc.2021.116268
  • Jha V, Janoff EN. Complementary role of CD4+ T cells in response to pneumococcal polysaccharide vaccines in humans. Vaccines (Basel). 2019 Feb 11;7(1):18. doi: 10.3390/vaccines7010018
  • Vos Q, Lees A, Wu ZQ, et al. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol Rev. 2000 Aug;176:154–170.
  • Craxton A, Magaletti D, Ryan EJ, et al. Macrophage- and dendritic cell–dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood. 2003 Jun 1;101(11):4464–4471. doi: 10.1182/blood-2002-10-3123
  • Khatun F, Toth I, Stephenson RJ. Immunology of carbohydrate-based vaccines. Adv Drug Deliv Rev. 2020;165-166:117–126. doi: 10.1016/j.addr.2020.04.006
  • Snapper CM, Mond JJ. A model for induction of T cell-independent humoral immunity in response to polysaccharide antigens. J Immunol. 1996;157(6):2229–2233. doi: 10.4049/jimmunol.157.6.2229
  • Pace D. Glycoconjugate vaccines.Expert Opin Biol Ther. 2013 Jan 1;13(1):11–33. doi: 10.1517/14712598.2012.725718
  • Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol. 2022 Dec;22(12):751–764. doi: 10.1038/s41577-022-00707-2
  • Richmond P, Kaczmarski E, Borrow R, et al. Meningococcal C polysaccharide vaccine induces immunologic hyporesponsiveness in adults that is overcome by meningococcal C conjugate vaccine. J Infect Dis. 2000 Feb;181(2):761–764. doi: 10.1086/315284
  • Brynjolfsson SF, Henneken M, Bjarnarson SP, et al. Hyporesponsiveness following booster immunization with bacterial polysaccharides is caused by apoptosis of memory B cells. J Infect Dis. 2011;205(3):422–430. doi: 10.1093/infdis/jir750
  • Bjarnarson SP, Benonisson H, Del Giudice G, et al. Pneumococcal polysaccharide abrogates conjugate-induced germinal center reaction and depletes antibody secreting cell pool, causing hyporesponsiveness. PLoS One. 2013;8(9):e72588. doi: 10.1371/journal.pone.0072588
  • Zandvoort A, Timens W. The dual function of the splenic marginal zone: essential for initiation of anti-TI-2 responses but also vital in the general first-line defense against blood-borne antigens. Clin Exp Immunol. 2002 Oct;130(1):4–11. doi: 10.1046/j.1365-2249.2002.01953.x
  • Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009 Mar;9(3):185–194. doi: 10.1038/nri2508
  • Sun L, Middleton DR, Wantuch PL, et al. Carbohydrates as T-cell antigens with implications in health and disease. Glycobiology. 2016 Oct;26(10):1029–1040. doi: 10.1093/glycob/cww062
  • Avci FY, Li X, Tsuji M, et al. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat Med. 2011 Nov 20;17(12):1602–1609. doi: 10.1038/nm.2535
  • Koj S, Lugowski C, Niedziela T. In-cell depolymerization of polysaccharide antigens. Exploring the processing pathways of glycans and why some glycoconjugate vaccines are less effective than expected: a review. Carbohydr Polym. 2023 Sep 1;315:120969. doi: 10.1016/j.carbpol.2023.120969
  • Micoli F, Stefanetti G, MacLennan CA. Exploring the variables influencing the immune response of traditional and innovative glycoconjugate vaccines [review]. Front Mol Biosci. 2023 May 16;10:10. doi: 10.3389/fmolb.2023.1201693
  • Middleton DR, Sun L, Paschall AV, et al. T Cell-Mediated Humoral Immune Responses to type 3 capsular polysaccharide of streptococcus pneumoniae. J Immunol. 2017 Jul 15;199(2):598–603. doi: 10.4049/jimmunol.1700026
  • Sun X, Stefanetti G, Berti F, et al. Polysaccharide structure dictates mechanism of adaptive immune response to glycoconjugate vaccines. Proc Natl Acad Sci, USA. 2019 Jan 2;116(1):193–198. doi: 10.1073/pnas.1816401115
  • Romano MR, Berti F, Rappuoli R. Classical- and bioconjugate vaccines: comparison of the structural properties and immunological response. Curr Opin Immunol. 2022 Oct 01;78:102235. doi: 10.1016/j.coi.2022.102235
  • Del Bino L, Østerlid KE, Wu D-Y, et al. Synthetic glycans to improve Current glycoconjugate vaccines and fight antimicrobial resistance. Chem Rev. 2022 Oct 26;122(20):15672–15716. doi: 10.1021/acs.chemrev.2c00021
  • Micoli F, Del Bino L, Alfini R, et al. Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev Vaccines. 2019 Sep 2;18(9):881–895. doi: 10.1080/14760584.2019.1657012
  • Verez-Bencomo V, Fernández-Santana V, Hardy E, et al. A synthetic conjugate polysaccharide vaccine against haemophilus influenzae type b. Science. 2004 Jul 23;305(5683):522–525. doi: 10.1126/science.1095209
  • Cohen D, Atsmon J, Artaud C, et al. Safety and immunogenicity of a synthetic carbohydrate conjugate vaccine against shigella flexneri 2a in healthy adult volunteers: a phase 1, dose-escalating, single-blind, randomised, placebo-controlled study. Lancet Infect Dis. 2021 Apr;21(4):546–558. doi: 10.1016/S1473-3099(20)30488-6
  • Seeberger PH. Discovery of semi- and fully-synthetic carbohydrate vaccines against bacterial infections using a medicinal chemistry approach.Chem Rev. 2021;121(7):3598–3626. doi: 10.1021/acs.chemrev.0c01210
  • Fiebig T, Freiberger F, Pinto V, et al. Molecular cloning and functional characterization of components of the capsule biosynthesis complex of Neisseria meningitidis serogroup A: toward in vitro vaccine production. J Biol Chem. 2014;289(28):19395–19407. doi: 10.1074/jbc.M114.575142
  • Fiebig T, Romano MR, Oldrini D, et al. An efficient cell free enzyme-based total synthesis of a meningococcal vaccine candidate. NPJ Vaccines. 2016;1(1):16017. doi: 10.1038/npjvaccines.2016.17
  • Oldrini D, Fiebig T, Romano MR, et al. Combined chemical synthesis and tailored enzymatic elongation provide fully synthetic and conjugation-ready Neisseria meningitidis serogroup X vaccine antigens. ACS Chem Biol. 2018 Apr 20;13(4):984–994. doi: 10.1021/acschembio.7b01057
  • Berti F, Adamo R. Antimicrobial glycoconjugate vaccines: an overview of classic and modern approaches for protein modification [10.1039/C8CS00495A]. Chem Soc Rev. 2018;47(24):9015–9025. doi: 10.1039/C8CS00495A
  • Kapoor N, Vanjak I, Rozzelle J, et al. Malaria derived glycosylphosphatidylinositol anchor enhances anti-Pfs25 functional antibodies that block malaria transmission. Biochem. 2018;57(5):516–519. doi: 10.1021/acs.biochem.7b01099
  • Kapoor N, Uchiyama S, Pill L, et al. Non-native amino acid click chemistry-based technology for site-specific polysaccharide conjugation to a bacterial protein serving as both carrier and vaccine antigen. ACS Omega. 2022 Jul 19;7(28):24111–24120. doi: 10.1021/acsomega.1c07360
  • Fairman J, Agarwal P, Barbanel S, et al. Non-clinical immunological comparison of a next-generation 24-valent pneumococcal conjugate vaccine (VAX-24) using site-specific carrier protein conjugation to the current standard of care (PCV13 and PPV23). Vaccine. 2021 May 27;39(23):3197–3206. doi: 10.1016/j.vaccine.2021.03.070
  • Dow JM, Mauri M, Scott TA, et al. Improving protein glycan coupling technology (PGCT) for glycoconjugate vaccine production. Expert Rev Vaccines. 2020 June 2;19(6):507–527. doi: 10.1080/14760584.2020.1775077
  • Wacker M, Linton D, Hitchen PG, et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science. 2002 Nov 29;298(5599):1790–1793. doi: 10.1126/science.298.5599.1790
  • Kay E, Cuccui J, Wren BW. Recent advances in the production of recombinant glycoconjugate vaccines.NPJ Vaccines. 2019 May 1;4(1):16. doi: 10.1038/s41541-019-0110-z
  • Kowarik M, Young NM, Numao S, et al. Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 2006 May 3;25(9):1957–1966. doi: 10.1038/sj.emboj.7601087
  • Kowarik M, Wetter M, Haeuptle MA, et al. The development and characterization of an E. coli O25B bioconjugate vaccine. Glycoconj J. 2021 Aug;38(4):421–435. doi: 10.1007/s10719-021-09985-9
  • Herbert JA, Kay EJ, Faustini SE, et al. Production and efficacy of a low-cost recombinant pneumococcal protein polysaccharide conjugate vaccine. Vaccine. 2018 Jun 18;36(26):3809–3819. doi: 10.1016/j.vaccine.2018.05.036
  • Harding CM, Feldman MF. Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology. 2019 Jul 1;29(7):519–529. doi: 10.1093/glycob/cwz031
  • Riddle MS, Kaminski RW, Di Paolo C, et al. Safety and immunogenicity of a candidate bioconjugate vaccine against shigella flexneri 2a administered to healthy adults: a single-blind, randomized phase I study. Clin Vaccine Immunol. 2016 Dec;23(12):908–917. doi: 10.1128/CVI.00224-16
  • Talaat KR, Alaimo C, Martin P, et al. Human challenge study with a shigella bioconjugate vaccine: analyses of clinical efficacy and correlate of protection. EBioMedicine. 2021;66:66. doi: 10.1016/j.ebiom.2021.103310
  • Saade E, Gravenstein S, Donskey CJ, et al. Characterization of Escherichia coli isolates potentially covered by ExPEC4V and ExPEC10V, that were collected from post-transrectal ultrasound-guided prostate needle biopsy invasive urinary tract and bloodstream infections. Vaccine. 2020 Jul 14;38(33):5100–5104. doi: 10.1016/j.vaccine.2020.06.024
  • Scully IL, Timofeyeva Y, Illenberger A, et al. Performance of a Four-Antigen Staphylococcus aureus vaccine in preclinical models of invasive S. aureus disease. Microorganisms. 2021 Jan 15;9(1):177. doi: 10.3390/microorganisms9010177
  • Gurtman A, Begier E, Mohamed N, et al. The development of a staphylococcus aureus four antigen vaccine for use prior to elective orthopedic surgery. Hum Vaccin Immunother. 2019;15(2):358–370. doi: 10.1080/21645515.2018.1523093
  • Creech CB, Frenck RW, Fiquet A, et al. Persistence of immune responses through 36 months in healthy adults after vaccination with a novel staphylococcus aureus 4-antigen vaccine (SA4Ag). Open Forum Infect Dis. 2019;7(1). doi: 10.1093/ofid/ofz532
  • Smith W B, Abbanat D, Spiessens B, et al. 2712. Safety and immunogenicity of two doses of ExPEC4V vaccine against extraintestinal pathogenic Escherichia coli disease in healthy adult participants. Open Forum Infect Dis. 2019;6(Supplement_2):S954–S954. doi: 10.1093/ofid/ofz360.2389
  • Frenck RW Jr., Ervin J, Chu L, et al. Safety and immunogenicity of a vaccine for extra-intestinal pathogenic Escherichia coli (ESTELLA): a phase 2 randomised controlled trial. Lancet Infect Dis. 2019 Jun;19(6):631–640. doi: 10.1016/S1473-3099(18)30803-X
  • Hülsdünker J, Thomas OS, Haring E, et al. Immunization against poly-N-acetylglucosamine reduces neutrophil activation and GVHD while sparing microbial diversity. Proc Natl Acad Sci, USA. 2019;116(41):20700–20706. doi: 10.1073/pnas.1908549116
  • Patel M, Kaufman DA. Anti-lipoteichoic acid monoclonal antibody (pagibaximab) studies for the prevention of staphylococcal bloodstream infections in preterm infants. Expert Opin Biol Ther. 2015 Apr;15(4):595–600. doi: 10.1517/14712598.2015.1019857
  • Chastre J, François B, Bourgeois M, et al. Safety, efficacy, and pharmacokinetics of gremubamab (MEDI3902), an anti-Pseudomonas aeruginosa bispecific human monoclonal antibody, in P. aeruginosa-colonised, mechanically ventilated intensive care unit patients: a randomised controlled trial. Crit Care. 2022 Nov 15;26(1):355. doi: 10.1186/s13054-022-04204-9
  • Loos A, Weich N, Woo J, et al. 674. Pre-Clinical and Phase I Safety Data for Anti-Pseudomonas aeruginosa Human Monoclonal Antibody AR-105. Open Forum Infect Dis. 2019;6(Supplement_2):S307–S308. doi: 10.1093/ofid/ofz360.742
  • López-Sagaseta J, Malito E, Rappuoli R, et al. Self-assembling protein nanoparticles in the design of vaccines. Comput Struct Biotechnol J. 2016;14:58–68. doi: 10.1016/j.csbj.2015.11.001
  • Morelli L, Polito L, Richichi B, et al. Glyconanoparticles as tools to prevent antimicrobial resistance. Glycoconj J. 2021;38(4):475–490. doi: 10.1007/s10719-021-09988-6
  • Doan TA, Forward T, Tamburini BAJ. Trafficking and retention of protein antigens across systems and immune cell types.Cell Mol Life Sci. 2022;79(5):275. doi: 10.1007/s00018-022-04303-4
  • van der Put RMF, Metz B, Pieters RJ. Carriers and Antigens: new developments in glycoconjugate vaccines. Vaccines. 2023;11(2):219. doi: 10.3390/vaccines11020219
  • Zottig X, Côté-Cyr M, Arpin D, et al. Protein supramolecular structures: from self-assembly to nanovaccine design. Nanomaterials. 2020;10(5):1008. doi: 10.3390/nano10051008
  • Olshefsky A, Richardson C, Pun SH, et al. Engineering self-assembling protein nanoparticles for therapeutic delivery. Bioconjug Chem. 2022 Mar 16;33(11):2018–2034. doi: 10.1021/acs.bioconjchem.2c00030
  • Fuenmayor J, Gòdia F, Cervera L. Production of virus-like particles for vaccines. N Biotechnol. 2017 Oct 25;39(Pt B):174–180. doi: 10.1016/j.nbt.2017.07.010
  • Venters C, Graham W, Cassidy W. Recombivax-HB: perspectives past, present and future.Expert Rev Vaccines. 2004 June 1;3(2):119–129. doi: 10.1586/14760584.3.2.119
  • Kheirollahpour M, Mehrabi M, Dounighi NM, et al. Nanoparticles and Vaccine Development. Pharm Nanotechnol. 2020;8(1):6–21. doi: 10.2174/2211738507666191024162042
  • Polonskaya Z, Deng S, Sarkar A, et al. T cells control the generation of nanomolar-affinity anti-glycan antibodies. J Clin Invest. 2017 Apr 3;127(4):1491–1504. doi: 10.1172/JCI91192
  • Xu L, Li Z, Su Z, et al. Development of meningococcal polysaccharide conjugate vaccine that can elicit long-lasting and strong cellular immune response with hepatitis B core antigen virus-like particles as a novel carrier protein. Vaccine. 2019 Aug 8;37(7):956–964. doi: 10.1016/j.vaccine.2018.12.073
  • Rashidijahanabad Z, Kelly M, Kamruzzaman M, et al. Virus-like particle display of vibrio choleraeO-Specific polysaccharide as a potential vaccine against cholera. ACS Infect Dis. 2022 Mar 11;8(3):574–583. doi: 10.1021/acsinfecdis.1c00585
  • King NP, Sheffler W, Sawaya MR, et al. Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science. 2012 Jun 1;336(6085):1171–1174. doi: 10.1126/science.1219364
  • Correnti CE, Hallinan JP, Doyle LA, et al. Engineering and functionalization of large circular tandem repeat protein nanoparticles. Nat Struct Mol Biol. 2020;27(4):342–350. doi: 10.1038/s41594-020-0397-5
  • Marcandalli J, Fiala B, Ols S, et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell. 2019 Mar 7;176(6):1420–1431.e17. doi: 10.1016/j.cell.2019.01.046
  • Walls AC, Fiala B, Schäfer A, et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell. 2020 Nov 25;183(5):1367–1382.e17. doi: 10.1016/j.cell.2020.10.043
  • Arunachalam PS, Walls AC, Golden N, et al. Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature. 2021 June 1;594(7862):253–258. doi: 10.1038/s41586-021-03530-2
  • Boyoglu-Barnum S, Ellis D, Gillespie RA, et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature. 2021 Apr;592(7855):623–628. doi: 10.1038/s41586-021-03365-x
  • Bernadac A, Gavioli M, Lazzaroni JC, et al. Escherichia coli tol-pal mutants form outer membrane vesicles. J Bacteriol. 1998 Sep;180(18):4872–4878. doi: 10.1128/JB.180.18.4872-4878.1998
  • Turner L, Praszkier J, Hutton ML, et al. Increased Outer Membrane Vesicle Formation in a Helicobacter pylori tolB Mutant. Helicobacter. 2015 Aug;20(4):269–283. doi: 10.1111/hel.12196
  • Mancini F, Micoli F, Necchi F, et al. GMMA-Based vaccines: the known and the unknown. Front Immunol. 2021;12:715393. doi: 10.3389/fimmu.2021.715393
  • Micoli F, Rossi O, Conti V, et al. Antibodies elicited by the shigella sonnei GMMA vaccine in adults trigger complement-mediated serum bactericidal activity: results from a phase 1 dose escalation trial followed by a booster extension. Front Immunol. 2021;12:671325. doi: 10.3389/fimmu.2021.671325
  • Di Benedetto R, Alfini R, Carducci M, et al. Novel simple conjugation chemistries for decoration of GMMA with Heterologous Antigens. Int J Mol Sci. 2021 Sep 22;22(19):10180. doi: 10.3390/ijms221910180
  • Palmieri E, Kis Z, Ozanne J, et al. GMMA as an alternative carrier for a glycoconjugate vaccine against group a streptococcus. Vaccines (Basel). 2022 Jun 28;10(7):1034. doi: 10.3390/vaccines10071034
  • Gasperini G, Alfini R, Arato V, et al. Salmonella Paratyphi A Outer Membrane Vesicles Displaying Vi Polysaccharide as a Multivalent Vaccine against Enteric Fever. Infect Immun. 2021 Mar 17;89(4). doi: 10.1128/IAI.00699-20
  • Micoli F, Alfini R, Di Benedetto R, et al. Generalized modules for membrane antigens as carrier for polysaccharides: impact of sugar length, density, and attachment site on the immune response elicited in animal models. Front Immunol. 2021;12:719315. doi: 10.3389/fimmu.2021.719315
  • Raso MM, Gasperini G, Alfini R, et al. GMMA and glycoconjugate approaches compared in mice for the development of a vaccine against shigella flexneri serotype 6. Vaccines (Basel). 2020 Apr 3;8(2):160. doi: 10.3390/vaccines8020160
  • Valguarnera E, Feldman MF. Glycoengineered outer membrane vesicles as a platform for vaccine development. Methods Enzymol. 2017;597:285–310.
  • Gnopo YMD, Watkins HC, Stevenson TC, et al. Designer outer membrane vesicles as immunomodulatory systems - reprogramming bacteria for vaccine delivery. Adv Drug Deliv Rev. 2017 May 15;114:132–142. doi: 10.1016/j.addr.2017.05.003
  • Chen L, Valentine JL, Huang CJ, et al. Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies. Proc Natl Acad Sci, USA. 2016 Jun 28;113(26):E3609–18. doi: 10.1073/pnas.1518311113
  • Price NL, Goyette-Desjardins G, Nothaft H, et al. Glycoengineered Outer Membrane Vesicles: A Novel Platform for Bacterial Vaccines. Sci Rep. 2016 Apr 22;6(1):24931. doi: 10.1038/srep24931
  • Stevenson TC, Cywes-Bentley C, Moeller TD, et al. Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies. Proc Natl Acad Sci, USA. 2018;115(14):E3106–E3115. doi: 10.1073/pnas.1718341115
  • Zhang F, Lu YJ, Malley R. Multiple antigen-presenting system (MAPS) to induce comprehensive B- and T-cell immunity. Proc Natl Acad Sci, USA. 2013 Aug 13;110(33):13564–13569. doi: 10.1073/pnas.1307228110
  • Zhang F, Thompson C, Ma N, et al. Carrier proteins facilitate the generation of antipolysaccharide immunity via multiple mechanisms. mBio. MBio. 2022 Jun 28;13(3):e0379021. doi: 10.1128/mbio.03790-21
  • Zhang F, Ledue O, Jun M, et al. Protection against staphylococcus aureus colonization and infection by B- and T-Cell-mediated mechanisms. MBio. 2018 Oct 16;9(5). doi: 10.1128/mBio.01949-18
  • Chichili GR, Smulders R, Santos V, et al. Phase 1/2 study of a novel 24-valent pneumococcal vaccine in healthy adults aged 18 to 64 years and in older adults aged 65 to 85 years. Vaccine. 2022 Jul 29;40(31):4190–4198. doi: 10.1016/j.vaccine.2022.05.079
  • Choi M, Tennant SM, Simon R, et al. Progress towards the development of klebsiella vaccines. Expert Rev Vaccines. 2019 Jul;18(7):681–691. doi: 10.1080/14760584.2019.1635460
  • CDC. Antibiotic resistance threats in the United States, 2019. Atlanta GA: US Department of Health and Human Services; 2019.
  • Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli.Nature Rev Microbiol. 2004 Feb 1;2(2):123–140. doi: 10.1038/nrmicro818
  • Khalil IA, Troeger C, Blacker BF, et al. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: the global burden of disease study 1990-2016. Lancet Infect Dis. 2018 Nov;18(11):1229–1240. doi: 10.1016/S1473-3099(18)30475-4
  • O’Brien VP, Hannan TJ, Nielsen HV, et al. Drug and vaccine development for the treatment and prevention of urinary tract infections. Microbiol Spectr. 2016 Feb;4(1). doi: 10.1128/microbiolspec.UTI-0013-2012
  • Brumbaugh AR, Mobley HL. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert Rev Vaccines. 2012 Jun;11(6):663–676. doi: 10.1586/erv.12.36
  • McLellan LK, Hunstad DA. Urinary tract infection: pathogenesis and outlook.Trends Mol Med. 2016 Nov 1;22(11):946–957. doi: 10.1016/j.molmed.2016.09.003
  • Pokharel P, Dhakal S, Dozois CM. The diversity of Escherichia coli Pathotypes and vaccination strategies against this versatile bacterial pathogen. Microorganisms. 2023;11(2):344. doi: 10.3390/microorganisms11020344
  • Chorro L, Li Z, Chu L, et al. Preclinical immunogenicity and efficacy of optimized O25b O-Antigen glycoconjugates to prevent MDR ST131 E. coli infections. Infect Immun. 2022 Apr 21;90(4):e0002222. doi: 10.1128/iai.00022-22
  • McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in staphylococcus aureus. Yale J Biol Med. 2017 Jun;90(2):269–281.
  • Olaniyi R, Pozzi C, Grimaldi L, et al. Staphylococcus aureus-associated skin and soft tissue infections: anatomical localization, epidemiology, therapy and potential prophylaxis. Curr Top Microbiol Immunol. 2017;409:199–227.
  • Humphreys H, Becker K, Dohmen PM, et al. Staphylococcus aureus and surgical site infections: benefits of screening and decolonization before surgery. J Hosp Infect. 2016;94(3):295–304. doi: 10.1016/j.jhin.2016.06.011
  • Gooch JR, Serazin A, Schwarm E, et al. Vaccines to tackle drug resistant infections - an evaluation of R&D opportunities the boston consulting group/wellcome trust. 2018. https://vaccinesforamr.org/
  • Sands K, Carvalho MJ, Portal E, et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat Microbiol. 2021 Apr;6(4):512–523. doi: 10.1038/s41564-021-00870-7
  • Priebe GP, Goldberg JB. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert Rev Vaccines. 2014 Apr;13(4):507–519. doi: 10.1586/14760584.2014.890053
  • El Zowalaty ME, Al Thani AA, Webster TJ, et al. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 2015;10(10):1683–1706. doi: 10.2217/fmb.15.48
  • Zhao M, Qin C, Li L, et al. Conjugation of synthetic trisaccharide of staphylococcus aureus type 8 capsular polysaccharide elicits antibodies recognizing intact bacterium. Front Chem. 2020;8:258. doi: 10.3389/fchem.2020.00258
  • Cheng BL, Nielsen TB, Pantapalangkoor P, et al. Evaluation of serotypes 5 and 8 capsular polysaccharides in protection against staphylococcus aureus in murine models of infection. Hum Vaccin Immunother. 2017 Jul 3;13(7):1609–1614. doi: 10.1080/21645515.2017.1304334
  • Yang FL, Lou TC, Kuo SC, et al. A medically relevant capsular polysaccharide in Acinetobacter baumannii is a potential vaccine candidate. Vaccine. 2017 Mar 7;35(10):1440–1447. doi: 10.1016/j.vaccine.2017.01.060
  • Rudenko N, Karatovskaya A, Zamyatina A, et al. Immune response to conjugates of fragments of the type K9 capsular polysaccharide of acinetobacter baumannii with carrier proteins. Microbiol Spectr. 2022 Oct 26;10(5):e0167422. doi: 10.1128/spectrum.01674-22
  • Kobayashi SD, Porter AR, Freedman B, et al. Antibody-mediated killing of carbapenem-resistant ST258 Klebsiella pneumoniae by human neutrophils. MBio. 2018 Mar 13;9(2). doi: 10.1128/mBio.00297-18
  • Kalfopoulou E, Laverde D, Miklic K, et al. Development of Opsonic Mouse Monoclonal Antibodies against Multidrug-Resistant Enterococci. Infect Immun. 2019 Sep;87(9). doi: 10.1128/IAI.00276-19
  • Romero-Saavedra F, Laverde D, Kalfopoulou E, et al. Conjugation of different immunogenic enterococcal vaccine target antigens leads to extended strain coverage. J Infect Dis. 2019 Oct 8;220(10):1589–1598. doi: 10.1093/infdis/jiz357
  • Laverde D, Romero-Saavedra F, Argunov DA, et al. Synthetic oligomers mimicking capsular polysaccharide diheteroglycan are potential vaccine candidates against encapsulated enterococcal infections. ACS Infect Dis. 2020 Jul 10;6(7):1816–1826. doi: 10.1021/acsinfecdis.0c00063
  • Feldman MF, Mayer Bridwell AE, Scott NE, et al. A promising bioconjugate vaccine against hypervirulent Klebsiella pneumoniae. Proc Natl Acad Sci, USA. 2019 Sep 10;116(37):18655–18663. doi: 10.1073/pnas.1907833116
  • Ravinder M, Liao KS, Cheng YY, et al. A Synthetic Carbohydrate-Protein Conjugate Vaccine Candidate against Klebsiella pneumoniae Serotype K2. J Org Chem. 2020 Dec 18;85(24):15964–15997. doi: 10.1021/acs.joc.0c01404
  • Maleki M, Azimi S, Salouti M. Protective effect of two new nanovaccines against Pseudomonas aeruginosa based on LPS and OPS: a comparison study. Immunobiol. 2022 Nov;227(6):152278. doi: 10.1016/j.imbio.2022.152278
  • Najafzadeh F, Tanomand A, Hadadi A, et al. Immunological Properties of Exotoxin A Toxoid - Detoxified Lipopolysaccharide - Gold Nanoparticles Conjugate Against Pseudomonas aeruginosa Infection. Iran J Immunol. 2021;18(4):292–303. doi: 10.22034/IJI.2021.87816.1832
  • Hegerle N, Choi M, Sinclair J, et al. Development of a broad spectrum glycoconjugate vaccine to prevent wound and disseminated infections with Klebsiella pneumoniae and Pseudomonas aeruginosa. PLoS One. 2018;13(9):e0203143. doi: 10.1371/journal.pone.0203143
  • Cross AT, Michon F. Novel multivalent vaccine for Gram-negative bacterial pathogens including multiple antibiotic resistant strains. 18th Annual World Vaccine Congress; (WA) DC USA 2019.
  • Naini A, Bartetzko MP, Sanapala SR, et al. Semisynthetic glycoconjugate vaccine candidates against Escherichia coli O25B induce functional IgG antibodies in mice. J Am Chem Soc Au. 2022;2(9):2135–2151. doi: 10.1021/jacsau.2c00401
  • Williams AJ, Warfel KF, Desai P, et al. A low-cost recombinant glycoconjugate vaccine confers immunogenicity and protection against enterotoxigenic Escherichia coli infections in mice [original research]. Front Mol Biosci. 2023 Mar 2;10:10.
  • Kong L, Vijayakrishnan B, Kowarik M, et al. An antibacterial vaccination strategy based on a glycoconjugate containing the core lipopolysaccharide tetrasaccharide Hep2Kdo2. Nat Chem. 2016 Mar 1;8(3):242–249. doi: 10.1038/nchem.2432
  • Jamshidi MP, Cairns C, Chong S, et al. Synthesis and immunogenicity of a methyl rhamnan pentasaccharide conjugate from Pseudomonas aeruginosa A-Band polysaccharide. ACS Infect Dis. 2022 Jul 8;8(7):1347–1355. doi: 10.1021/acsinfecdis.2c00184
  • Zhang L, Zhang Y, Hua Q, et al. Promoter-controlled synthesis and antigenic evaluation of mannuronic acid alginate glycans of Pseudomonas aeruginosa. Org Lett. 2022 Nov 18;24(45):8381–8386. doi: 10.1021/acs.orglett.2c03439
  • Azimi S, Safari Zanjani L. Immunization against Pseudomonas aeruginosa using Alg-PLGA nano-vaccine. Iran J Basic Med Sci. 2021 Apr;24(4):476–482. doi: 10.22038/ijbms.2021.52217.11813
  • Afshari H, Maleki M, Hakimian M, et al. Immunogenicity evaluating of the SLNs-alginate conjugate against Pseudomonas aeruginosa. J Immunol Methods. 2021 Jan;488:112938.
  • Farjah A, Owlia P, Siadat SD, et al. Immunological evaluation of an alginate-based conjugate as a vaccine candidate against Pseudomonas aeruginosa. APMIS. 2015 Feb;123(2):175–183. doi: 10.1111/apm.12337
  • Gonzaga ZJC, Merakou C, DiGiandomenico A, et al. A Pseudomonas aeruginosa-Derived Particulate Vaccine Protects against P. aeruginosa Infection. Vaccines (Basel). 2021 Jul 20;9(7):803. doi: 10.3390/vaccines9070803
  • Lee JW, Parlane NA, Wedlock DN, et al. Bioengineering a bacterial pathogen to assemble its own particulate vaccine capable of inducing cellular immunity. Sci Rep. 2017;7(1):41607. doi: 10.1038/srep41607
  • Lee IM, Yang F-L, Chen T-L, et al. Pseudaminic acid on exopolysaccharide of acinetobacter baumannii plays a critical role in phage-assisted preparation of glycoconjugate vaccine with high antigenicity. J Am Chem Soc. 2018 July 18;140(28):8639–8643. doi: 10.1021/jacs.8b04078
  • Wei R, Yang X, Liu H, et al. Synthetic pseudaminic-acid-based antibacterial vaccine confers effective protection against acinetobacter baumannii infection. ACS Cent Sci. 2021 Sep 22;7(9):1535–1542. doi: 10.1021/acscentsci.1c00656
  • Kodali S, Vinogradov E, Lin F, et al. A vaccine approach for the prevention of infections by multidrug-resistant Enterococcus faecium. J Biol Chem. 2015 Aug 7;290(32):19512–19526. doi: 10.1074/jbc.M115.655852
  • Gholami SA, Goli HR, Haghshenas MR, et al. Evaluation of polysaccharide intercellular adhesion (PIA) and glycerol teichoic acid (gly-TA) arisen antibodies to prevention of biofilm formation in staphylococcus aureus and Staphylococcus epidermidis strains. BMC Res Notes. 2019 Oct 25;12(1):691. doi: 10.1186/s13104-019-4736-8
  • Laverde D, Wobser D, Romero-Saavedra F, et al. Synthetic teichoic acid conjugate vaccine against nosocomial gram-positive bacteria. PLoS One. 2014;9(10):e110953. doi: 10.1371/journal.pone.0110953
  • Zhou Z, Ding W, Li C, et al. Synthesis and immunological study of a wall teichoic acid-based vaccine against E. faecium U0317. J Carbohydr Chem. 2017 June 13;36(4–6):205–219. doi: 10.1080/07328303.2017.1390576
  • Micoli F, Romano MR, Carboni F, et al. Strengths and weaknesses of pneumococcal conjugate vaccines. Glycoconj J. 2023 Apr;40(2):135–148. doi: 10.1007/s10719-023-10100-3
  • Converso TR, Assoni L, André GO, et al. The long search for a serotype independent pneumococcal vaccine. Expert Rev Vaccines. 2020 Jan 2;19(1):57–70. doi: 10.1080/14760584.2020.1711055
  • Ali S, Berni F, Enotarpi J, et al. Synthetic teichoic acid chemistry for vaccine applications. In: Rauter A, Christensen B, Somsák L, et al. Recent trends in carbohydrate chemistry 2 . Elsevier; 2020. p. 207–238 doi: 10.1016/B978-0-12-820954-7.00006-2
  • Le Mauff F, Razvi E, Reichhardt C, et al. The pel polysaccharide is predominantly composed of a dimeric repeat of α-1,4 linked galactosamine and N-acetylgalactosamine. Commun Biol. 2022 May 26;5(1):502. doi: 10.1038/s42003-022-03453-2
  • Franklin M, Nivens D, Weadge J, et al. Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl [Review]. Front Microbiol. 2011 Aug 22;2. doi: 10.3389/fmicb.2011.00167
  • van Dalen R, Peschel A, van Sorge NM. Wall teichoic acid in staphylococcus aureus host interaction. Trends Microbiol. 2020;28(12):985–998. doi: 10.1016/j.tim.2020.05.017
  • Hsieh SA, Allen PM. Immunomodulatory roles of polysaccharide capsules in the intestine. Front Immunol. 2020;11:690. doi: 10.3389/fimmu.2020.00690
  • Caroff M, Novikov A. Lipopolysaccharides: structure, function and bacterial identifications☆☆☆. OCL. 2020;27:31. doi: 10.1051/ocl/2020025
  • Zhu H, Rollier CS, Pollard AJ. Recent advances in lipopolysaccharide-based glycoconjugate vaccines.Expert Rev Vaccines. 2021 Dec 2;20(12):1515–1538. doi: 10.1080/14760584.2021.1984889
  • Singh R, Capalash N, Sharma P. Vaccine development to control the rising scourge of antibiotic-resistant acinetobacter baumannii: a systematic review. 3 Biotech. 2022 Mar;12(3):85. doi: 10.1007/s13205-022-03148-9
  • Giguère D. Surface polysaccharides from acinetobacter baumannii: structures and syntheses. Carbohydr Res. 2015;418:29–43. doi: 10.1016/j.carres.2015.10.001
  • Russo TA, Beanan JM, Olson R, et al. The K1 capsular polysaccharide from Acinetobacter baumannii is a potential therapeutic target via passive immunization. Infect Immun. 2013 Mar;81(3):915–922. doi: 10.1128/IAI.01184-12
  • Sianturi J, Priegue P, Hu J, et al. Semi-synthetic glycoconjugate vaccine lead against acinetobacter baumannii 17978. Angew Chem Int Ed Engl. 2022 Oct 10;61(41):e202209556. doi: 10.1002/anie.202209556
  • Li X, Pan C, Liu Z, et al. Safety and immunogenicity of a new glycoengineered vaccine against acinetobacter baumannii in mice. Microbiol Biotechnol. 2022 Feb;15(2):703–716. doi: 10.1111/1751-7915.13770
  • Pantophlet R, Nemec A, Brade L, et al. O-antigen diversity among acinetobacter baumannii strains from the Czech Republic and Northwestern Europe, as determined by lipopolysaccharide-specific monoclonal antibodies. J Clin Microbiol. 2001 Jul;39(7):2576–2580. doi: 10.1128/JCM.39.7.2576-2580.2001
  • Whitfield C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem. 2006;75(1):39–68. doi: 10.1146/annurev.biochem.75.103004.142545
  • Huttner A, Hatz C, Dobbelsteen G, et al. Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. Lancet Infect Dis. 2017 Feb 01;17(5):528–537. doi: 10.1016/S1473-3099(17)30108-1
  • Nesta B, Valeri M, Spagnuolo A, et al. SslE elicits functional antibodies that impair in vitro mucinase activity and in vivo colonization by both intestinal and extraintestinal Escherichia coli strains. PLOS Pathog. 2014 May;10(5):e1004124. doi: 10.1371/journal.ppat.1004124
  • Riaz S, Steinsland H, Thorsing M, et al. Characterization of glycosylation-specific systemic and mucosal IgA antibody responses to Escherichia coli mucinase YghJ (SslE). Front Immunol. 2021;12:760135. doi: 10.3389/fimmu.2021.760135
  • Szardenings M, Kern K, Delaroque N, et al. Glycosylation of bacterial antigens changes epitope patterns. Front Immunol. 2023;14:1258136. doi: 10.3389/fimmu.2023.1258136
  • Huebner J, Wang Y, Krueger WA, et al. Isolation and chemical characterization of a capsular polysaccharide antigen shared by clinical isolates of Enterococcus faecalis and vancomycin-resistant Enterococcus faecium. Infect Immun. 1999 Mar;67(3):1213–1219. doi: 10.1128/IAI.67.3.1213-1219.1999
  • Wang Y, Huebner J, Tzianabos AO, et al. Structure of an antigenic teichoic acid shared by clinical isolates of Enterococcus faecalis and vancomycin-resistant Enterococcus faecium. Carbohydr Res. 1999 Mar 31;316(1–4):155–160. doi: 10.1016/S0008-6215(99)00046-4
  • Hufnagel M, Carey VJ, Baldassarri L, et al. Distribution of four capsular serotypes of Enterococcus faecalis among clinical isolates from different geographical origins and infection sites. Infection. 2006 Feb;34(1):22–25. doi: 10.1007/s15010-006-4100-5
  • Huebner J, Quaas A, Krueger WA, et al. Prophylactic and therapeutic efficacy of antibodies to a capsular polysaccharide shared among vancomycin-sensitive and -resistant enterococci. Infect Immun. 2000 Aug;68(8):4631–4636. doi: 10.1128/IAI.68.8.4631-4636.2000
  • Theilacker C, Kaczyński Z, Kropec A, et al. Serodiversity of opsonic antibodies against Enterococcus faecalis–glycans of the cell wall revisited. PLoS One. 2011 Mar 18;6(3):e17839. doi: 10.1371/journal.pone.0017839
  • Ali L, Blum HE, Sakιnç T. Detection and characterization of bacterial polysaccharides in drug-resistant enterococci.Glycoconj J. 2019;36(5):429–438. doi: 10.1007/s10719-019-09881-3
  • Palmer KL, Godfrey P, Griggs A, et al. Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. MBio. 2012;3(1):e00318–11. doi: 10.1128/mBio.00318-11
  • Ali L, Spiess M, Wobser D, et al. Identification and functional characterization of the putative polysaccharide biosynthesis protein (CapD) of enterococcus faecium U0317. Infect Genet Evol. 2016;37:215–224.
  • Bychowska A, Theilacker C, Czerwicka M, et al. Chemical structure of wall teichoic acid isolated from enterococcus faecium strain U0317. Carbohydr Res. 2011 Dec 13;346(17):2816–2819. doi: 10.1016/j.carres.2011.09.026
  • Pan Y-J, Lin T-L, Chen C-T, et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of klebsiella spp. Sci Rep. 2015 Oct 23;5(1):15573. doi: 10.1038/srep15573
  • Edelman R, Taylor DN, Wasserman SS, et al. Phase 1 trial of a 24-valent Klebsiella capsular polysaccharide vaccine and an eight-valent Pseudomonas O-polysaccharide conjugate vaccine administered simultaneously. Vaccine. 1994 Nov;12(14):1288–1294. doi: 10.1016/S0264-410X(94)80054-4
  • Granström M, Wretlind B, Markman B, et al. Enzyme-linked immunosorbent assay to evaluate the immunogenicity of a polyvalent Klebsiella capsular polysaccharide vaccine in humans. J Clin Microbiol. 1988 Nov;26(11):2257–2261. doi: 10.1128/jcm.26.11.2257-2261.1988
  • Cryz SJ Jr., Mortimer P, Cross AS, et al. Safety and immunogenicity of a polyvalent Klebsiella capsular polysaccharide vaccine in humans. Vaccine. 1986 Mar;4(1):15–20. doi: 10.1016/0264-410X(86)90092-7
  • Arato V, Raso MM, Gasperini G, et al. Prophylaxis and treatment against Klebsiella pneumoniae: Current insights on this emerging anti-microbial resistant global threat. Int J Mol Sci. 2021 Apr 14;22(8):4042. doi: 10.3390/ijms22084042
  • Alexander JW, Fisher MW, MacMillan BG. Immunological control of pseudomonas infection in burn patients: a clinical evaluation. Arch Surg. 1971 Jan;102(1):31–35. doi: 10.1001/archsurg.1971.01350010033008
  • Haghbin M, Armstrong D, Murphy ML. Controlled prospective trial of Pseudomonas aeruginosa vaccine in children with acute leukemia. Cancer. 1973;32(4):761–766. doi: 10.1002/1097-0142(197310)32:4<761:AID-CNCR2820320405>3.0.CO;2-H
  • Young LS, Meyer RD, Armstrong D. Pseudomonas aeruginosa vaccine in cancer patients. Ann Intern Med. 1973 Oct;79(4):518–527. doi: 10.7326/0003-4819-79-4-518
  • Pennington JE, Reynolds HY, Wood RE, et al. Use of a Pseudomonas Aeruginosa vaccine in patients with acute leukemia and cystic fibrosis. Am J Med. 1975 May;58(5):629–636. doi: 10.1016/0002-9343(75)90498-2
  • Hortobagyi GN, Gutterman JU, Snyder RD, et al. Pseudomonas vaccine: a phase I evaluation for cancer research. Cancer Immunol Immunother. 1978;4(3):201–207. doi: 10.1007/BF00204741
  • MacIntyre S, McVeigh T, Owen P. Immunochemical and biochemical analysis of the polyvalent Pseudomonas aeruginosa vaccine PEV. Infect Immun. 1986 Feb;51(2):675–686. doi: 10.1128/iai.51.2.675-686.1986
  • Jones RJ, Roe EA, Gupta JL. Low mortality in burned patients in a pseudomonas vaccine trial. Lancet. 1978 Aug 19;2(8086):401–403. doi: 10.1016/S0140-6736(78)91868-8
  • Langford DT, Hiller J. Prospective, controlled study of a polyvalent pseudomonas vaccine in cystic fibrosis–three year results. Arch Dis Child. 1984 Dec;59(12):1131–1134. doi: 10.1136/adc.59.12.1131
  • Döring G, Pier GB. Vaccines and immunotherapy against Pseudomonas aeruginosa. Vaccine. 2008 Feb 20;26(8):1011–1024. doi: 10.1016/j.vaccine.2007.12.007
  • Cryz SJ Jr., Fürer E, Cross AS, et al. Safety and immunogenicity of a Pseudomonas aeruginosa O-polysaccharide toxin A conjugate vaccine in humans. J Clin Investig. 1987 July 01;80(1):51–56. doi: 10.1172/JCI113062
  • Cryz SJ, Sadoff JC, Fürer E. Octavalent Pseudomonas aeruginosa O-polysaccharide-toxin A conjugate vaccine.Microb Pathog. 1989 Jan 1;6(1):75–80. doi: 10.1016/0882-4010(89)90010-7
  • Lang AB, Rüdeberg A, Schöni MH, et al. Vaccination of cystic fibrosis patients against Pseudomonas aeruginosa reduces the proportion of patients infected and delays time to infection. Pediatr Infect Dis J. 2004 Jun;23(6):504–510. doi: 10.1097/01.inf.0000129688.50588.ac
  • Cryz SJ Jr., Wedgwood J, Lang AB, et al. Immunization of noncolonized cystic fibrosis patients against Pseudomonas aeruginosa. J Infect Dis. 1994;169(5):1159–1162. doi: 10.1093/infdis/169.5.1159
  • Killough M, Rodgers AM, Ingram RJ. Pseudomonas aeruginosa: Recent Advances in Vaccine Development. Vaccines (Basel). 2022 Jul 8;10(7). doi: 10.3390/vaccines10071100
  • Cairns CM, Michael FS, Jamshidi M, et al. Structural characterization and evaluation of an epitope at the tip of the A-Band rhamnan polysaccharide of Pseudomonas aeruginosa. ACS Infect Dis. 2022;8(7):1336–1346. doi: 10.1021/acsinfecdis.2c00183
  • Nanra JS, Buitrago SM, Crawford S, et al. Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus. Hum Vaccin Immunother. 2013 Mar;9(3):480–487. doi: 10.4161/hv.23223
  • Lockhart SP, Scott DA, Jansen KU, et al. Glycoconjugate vaccines: the clinical journey. Carbohydrate-based vaccines: from concept to clinic. ACS symposium series. Vol. 1290. USA: American Chemical Society; 2018. p. 7–59 doi: 10.1021/bk-2018-1290.ch002
  • Fattom AI, Horwith G, Fuller S, et al. Development of StaphVAX, a polysaccharide conjugate vaccine against S. aureus infection: from the lab bench to phase III clinical trials. Vaccine. 2004 Feb 17;22(7):880–887. doi: 10.1016/j.vaccine.2003.11.034
  • Fattom A, Fuller S, Propst M, et al. Safety and immunogenicity of a booster dose of staphylococcus aureus types 5 and 8 capsular polysaccharide conjugate vaccine (StaphVAX) in hemodialysis patients. Vaccine. 2004 Dec 16;23(5):656–663. doi: 10.1016/j.vaccine.2004.06.043
  • Fattom A, Matalon A, Buerkert J, et al. Efficacy profile of a bivalent staphylococcus aureus glycoconjugated vaccine in adults on hemodialysis: phase III randomized study. Hum Vaccin Immunother. 2015;11(3):632–641. doi: 10.4161/hv.34414
  • Levy J, Licini L, Haelterman E, et al. Safety and immunogenicity of an investigational 4-component staphylococcus aureus vaccine with or without AS03B adjuvant: results of a randomized phase I trial. Hum Vaccin Immunother. 2015;11(3):620–631. doi: 10.1080/21645515.2015.1011021
  • Nissen M, Marshall H, Richmond P, et al. A randomized phase I study of the safety and immunogenicity of three ascending dose levels of a 3-antigen staphylococcus aureus vaccine (SA3Ag) in healthy adults. Vaccine. 2015 Apr 8;33(15):1846–1854. doi: 10.1016/j.vaccine.2015.02.024
  • Frenck RW Jr., Creech CB, Sheldon EA, et al. Safety, tolerability, and immunogenicity of a 4-antigen staphylococcus aureus vaccine (SA4Ag): results from a first-in-human randomised, placebo-controlled phase 1/2 study. Vaccine. 2017 Jan 5;35(2):375–384. doi: 10.1016/j.vaccine.2016.11.010
  • Fattom A, Li X, Cho YH, et al. Effect of conjugation methodology, carrier protein, and adjuvants on the immune response to staphylococcus aureus capsular polysaccharides. Vaccine. 1995 Oct;13(14):1288–1293. doi: 10.1016/0264-410X(95)00052-3
  • Bagnoli F, Bertholet S, Grandi G. Inferring reasons for the failure of staphylococcus aureus vaccines in clinical trials [opinion]. Front Cell Infect Microbiol. 2012 Feb 22;2. doi: 10.3389/fcimb.2012.00016
  • Pier GB. Will there ever be a universal Staphylococcus aureus vaccine?Hum Vaccines Immunother. 2013;9(9):1865–1876. doi: 10.4161/hv.25182
  • Elli S, Alekseeva A, Ramakrishnan B, et al. Characterization of an antibody recognizing the conserved inner core of Pseudomonas aeruginosa lipopolysaccharides. Biochemistry. 2020;59(43):4202–4211. doi: 10.1021/acs.biochem.0c00642
  • van Dalen R, Molendijk MM, Ali S, et al. Do not discard Staphylococcus aureus WTA as a vaccine antigen. Nature. 2019;572(7767):E1–E2. doi: 10.1038/s41586-019-1416-8
  • Di Carluccio C, Soriano-Maldonado P, Berni F, et al. Antibody recognition of different staphylococcus aureus wall teichoic acid glycoforms. ACS Cent Sci. 2022;8(10):1383–1392. doi: 10.1021/acscentsci.2c00125
  • Berni F, Kalfopoulou E, Gimeno Cardells AM, et al. Epitope recognition of a Monoclonal antibody raised against a synthetic glycerol phosphate based teichoic acid. ACS Chem Biol. 2021;16(8):1344–1349. doi: 10.1021/acschembio.1c00422
  • van der Es D, Hogendorf WFJ, Overkleeft HS, et al. Teichoic acids: synthesis and applications [10.1039/C6CS00270F]. Chem Soc Rev. 2017;46(5):1464–1482. doi: 10.1039/C6CS00270F
  • Theilacker C, Kropec A, Hammer F, et al. Protection against staphylococcus aureus by antibody to the polyglycerolphosphate backbone of heterologous lipoteichoic acid. J Infect Dis. 2012;205(7):1076–1085. doi: 10.1093/infdis/jis022
  • Yi X-Y, Huang Z-X, Hou X-R, et al. Immunization with a peptide mimicking lipoteichoic acid protects mice against staphylococcus aureus infection. Vaccine. 2019;37(31):4325–4335. doi: 10.1016/j.vaccine.2019.06.024
  • Balducci E, Papi F, Capialbi DE, et al. Polysaccharides’ structures and functions in biofilm architecture of antimicrobial-resistant (AMR) pathogens. Int J Mol Sci. 2023 Feb 17;24(4):4030. doi: 10.3390/ijms24044030
  • Jennings LK, Storek KM, Ledvina HE, et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci, USA. 2015 Sep 8;112(36):11353–11358. doi: 10.1073/pnas.1503058112
  • Colvin KM, Irie Y, Tart CS, et al. The pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol. 2012 Aug;14(8):1913–1928. doi: 10.1111/j.1462-2920.2011.02657.x
  • Mishra M, Byrd MS, Sergeant S, et al. Pseudomonas aeruginosa psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization. Cell Microbiol. 2012 Jan;14(1):95–106. doi: 10.1111/j.1462-5822.2011.01704.x
  • DiGiandomenico A, Warrener P, Hamilton M, et al. Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide psl by phenotypic screening. J Exp Med. 2012 Jul 2;209(7):1273–1287. doi: 10.1084/jem.20120033
  • Ali SO, Yu XQ, Robbie GJ, et al. Phase 1 study of MEDI3902, an investigational anti-Pseudomonas aeruginosa PcrV and psl bispecific human monoclonal antibody, in healthy adults. Clin Microbiol Infect. 2019 May;25(5):.e629.1–.e629.6. doi: 10.1016/j.cmi.2018.08.004
  • Ray VA, Hill PJ, Stover CK, et al. Anti-psl targeting of Pseudomonas aeruginosa biofilms for neutrophil-mediated disruption. Sci Rep. 2017 Nov 22;7(1):16065. doi: 10.1038/s41598-017-16215-6
  • Skurnik D, Cywes-Bentley C, Pier GB. The exceptionally broad-based potential of active and passive vaccination targeting the conserved microbial surface polysaccharide PNAG. Expert Rev Vaccines. 2016 Aug;15(8):1041–1053. doi: 10.1586/14760584.2016.1159135
  • Maira-Litrán T, Kropec A, Abeygunawardana C, et al. Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun. 2002 Aug;70(8):4433–4440. doi: 10.1128/IAI.70.8.4433-4440.2002
  • Maira-Litrán T, Kropec A, Goldmann DA, et al. Comparative opsonic and protective activities of staphylococcus aureus conjugate vaccines containing native or deacetylated staphylococcal poly-N-acetyl-beta-(1-6)-glucosamine. Infect Immun. 2005 Oct;73(10):6752–6762. doi: 10.1128/IAI.73.10.6752-6762.2005
  • Maira-Litran T, Kropec A, Goldmann D, et al. Biologic properties and vaccine potential of the staphylococcal poly-N-acetyl glucosamine surface polysaccharide. Vaccine. 2004;22(7):872–879. doi: 10.1016/j.vaccine.2003.11.033
  • Pozzi C, Waters EM, Rudkin JK, et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in staphylococcus aureus device-associated infections. PLOS Pathog. 2012;8(4):e1002626. doi: 10.1371/journal.ppat.1002626
  • Gening ML, Pier GB, Nifantiev NE. Broadly protective semi-synthetic glycoconjugate vaccine against pathogens capable of producing poly-β-(1→6)-N-acetyl-d-glucosamine exopolysaccharide. Drug Discov Today Technol. 2020;35-36:13–21. doi: 10.1016/j.ddtec.2020.09.002
  • Soliman C, Walduck AK, Yuriev E, et al. Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly-N-acetylglucosamine. J Biol Chem. 2018;293(14):5079–5089. doi: 10.1074/jbc.RA117.001170
  • Bentancor LV, O’Malley JM, Bozkurt-Guzel C, et al. Poly-N-acetyl-β-(1-6)-glucosamine is a target for protective immunity against acinetobacter baumannii infections. Infect Immun. 2012 Feb;80(2):651–656. doi: 10.1128/IAI.05653-11
  • McDonald ND, Boyd EF. Structural and biosynthetic diversity of Nonulosonic acids (NulOs) that decorate surface structures in bacteria. Trends Microbiol. 2021;29(2):142–157. doi: 10.1016/j.tim.2020.08.002
  • Berti F, Adamo R. Recent mechanistic insights on glycoconjugate vaccines and future perspectives.ACS Chem Biol. 2013;8(8):1653–1663. doi: 10.1021/cb400423g
  • Kenyon JJ, Kasimova AA, Notaro A, et al. Acinetobacter baumannii K13 and K73 capsular polysaccharides differ only in K-unit side branches of novel non-2-ulosonic acids: di-N-acetylated forms of either acinetaminic acid or 8-epiacinetaminic acid. Carbohydr Res. 2017 Nov 27;452:149–155. doi: 10.1016/j.carres.2017.10.005
  • Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare Safety network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37(11):1288–1301. doi: 10.1017/ice.2016.174
  • Weiner-Lastinger LM, Abner S, Edwards JR, et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: summary of data reported to the national healthcare Safety network, 2015-2017. Infect Control Hosp Epidemiol. 2020 Jan;41(1):1–18. doi: 10.1017/ice.2019.296
  • Bonten M, Johnson JR, van den Biggelaar AHJ, et al. Epidemiology of Escherichia coli Bacteremia: A Systematic Literature Review. Clin Infect Dis. 2021 Apr 8;72(7):1211–1219. doi: 10.1093/cid/ciaa210
  • Liu Y, Zhu M, Fu X, et al. Escherichia coli causing neonatal meningitis during 2001-2020: a study in Eastern China. Int J Gen Med. 2021;14:3007–3016. doi: 10.2147/IJGM.S317299
  • Zhang W, Wang Q, Zhang L, et al. Comparison of epidemiological characteristics between ESBL and non-ESBL isolates of clinically isolated Escherichia coli from 2014 to 2022: a single-center study. Infect Drug Resist. 2023;16(null):5185–5195. doi: 10.2147/IDR.S414079
  • Kumar CK, Sands K, Walsh TR, et al. Global, regional, and national estimates of the impact of a maternal Klebsiella pneumoniae vaccine: a bayesian modeling analysis. PLOS Med. 2023;20(5):e1004239. doi: 10.1371/journal.pmed.1004239
  • Russo TA, Beanan JM, Olson R, et al. Capsular polysaccharide and the O-specific antigen impede antibody binding: a potential obstacle for the successful development of an extraintestinal pathogenic Escherichia coli vaccine. Vaccine. 2009 Jan 14;27(3):388–395. doi: 10.1016/j.vaccine.2008.10.082
  • Wantuch PL, Knoot CJ, Robinson LS, et al. Capsular polysaccharide inhibits vaccine-induced O-antigen antibody binding and function across both classical and hypervirulent K2: O1 strains of Klebsiella pneumoniae. PLOS Pathog. 2023;19(5):e1011367. doi: 10.1371/journal.ppat.1011367
  • Wells TJ, Whitters D, Sevastsyanovich YR, et al. Increased severity of respiratory infections associated with elevated anti-LPS IgG2 which inhibits serum bactericidal killing. J Exp Med. 2014;211(9):1893–1904. doi: 10.1084/jem.20132444
  • Thaden JT, Keller AE, Shire NJ, et al. Pseudomonas aeruginosa bacteremic patients exhibit nonprotective antibody titers against therapeutic antibody targets PcrV and Psl Exopolysaccharide. J Infect Dis. 2015;213(4):640–648. doi: 10.1093/infdis/jiv436
  • Hendriks A, Kerkman PF, Varkila MRJ, et al. Glycan-specific IgM is critical for human immunity to staphylococcus aureus. bioRxiv. 2023; 548956 doi: 10.1242/prelights.35297
  • Mbaeyi SAB, Catherine H, Duffy J, et al. Meningococcal vaccination: recommendations of the advisory committee on immunization practices, United States, 2020. MMWR Recomm Rep. 2020;69(No. RR–9):1–41. doi: 10.15585/mmwr.rr6909a1
  • Buonsanti C, Balocchi C, Harfouche C, et al. Novel adjuvant Alum-TLR7 significantly potentiates immune response to glycoconjugate vaccines. Sci Rep. 2016 Jul 21;6(1):29063. doi: 10.1038/srep29063
  • Avci F, Berti F, Dull P, et al. Glycoconjugates: what it would take to master these well-known yet little-understood immunogens for vaccine development. mSphere. 2019 Sep 25;4(5). doi: 10.1128/mSphere.00520-19
  • Pichichero ME. Protein carriers of conjugate vaccines.Hum Vaccines Immunother. 2013;9(12):2505–2523. doi: 10.4161/hv.26109
  • Pöllabauer EM, Petermann R, Ehrlich HJ. The influence of carrier protein on the immunogenicity of simultaneously administered conjugate vaccines in infants. Vaccine. 2009 Mar 10;27(11):1674–1679. doi: 10.1016/j.vaccine.2009.01.005