1,851
Views
0
CrossRef citations to date
0
Altmetric
Review

Vaccine development for pathogenic fungi: current status and future directions

, , , , , , , & show all
Pages 1136-1153 | Received 01 Aug 2023, Accepted 01 Nov 2023, Published online: 13 Nov 2023

References

  • World Health Organization. WHO fungal priority pathogens list to guide research, development and public health action [Internet]. Geneva. 2022 [cited 2023 Jun 18]. Available from: https://www.who.int/publications/i/item/9789240060241
  • Centers for Disease Control and Prevention. Impact of fungal diseases in the United States [Internet]. Atlanta (GA). 2023 [cited 2023 Jun 18]. Available from: https://www.cdc.gov/fungal/cdc-and-fungal/burden.html
  • Gold JAW, Ahmad FB, Cisewski JA, et al. Increased deaths from fungal infections during the coronavirus disease 2019 pandemic—national vital statistics system, United States, January 2020–December 2021. Clinl Infect Dis. 2022;76(3):e255–e262.
  • Kainz K, Bauer MA, Madeo F, et al. Fungal infections in humans: the silent crisis. Microb Cell. 2020;7(6):143–145.
  • Zhao Y, Ye L, Zhao F, et al. Cryptococcus neoformans, a global threat to human health. Infect Diseases Poverty. 2023;12(1):1–10.
  • Khalaf RA, Fattouh N, Medvecky M, et al. Whole genome sequencing of a clinical drug resistant Candida albicans isolate reveals known and novel mutations in genes involved in resistance acquisition mechanisms. J Med Microbiol. 2021;70(4):1–6. 001351.
  • Armstrong-James D, Kosmidis C, Bromley M. Update on the treatment of chronic pulmonary aspergillosis. Curr Opin Infect Dis. 2023;36(2):146–151. doi: 10.1097/QCO.0000000000000913
  • Brilhante RSN, de M GG, da SM, et al. A proposal for antifungal epidemiological cut-off values against Histoplasma capsulatum var. capsulatum based on the susceptibility of isolates from HIV-infected patients with disseminated histoplasmosis in Northeast Brazil. Int J Antimicrob Agents. 2018;52(2):272–277.
  • Baes Pereira S, Reis Gomes A D, Bressan Waller S, et al. Sporotrichosis in dogs: epidemiological and clinical-therapeutic profile and the emergence of itraconazole-resistant isolates. Med Mycol. 2022;60(12):1–8.
  • Du H, Bing J, Hu T, et al. Candida auris: epidemiology, biology, antifungal resistance, and virulence. PLOS Pathog. 2020;16(10):1–18.
  • Dannaoui E. Antifungal resistance in mucorales. Int J Antimicrob Agents. 2017;50(5):617–621. doi: 10.1016/j.ijantimicag.2017.08.010
  • Nicola AM, Albuquerque P, Paes HC, et al. Antifungal drugs: new insights in research & development. Pharmacol Ther. 2019;195:21–38. doi: 10.1016/j.pharmthera.2018.10.008
  • Peyclit L, Yousfi H, Rolain JM, et al. Drug repurposing in medical mycology: identification of compounds as potential antifungals to overcome the emergence of multidrug-resistant fungi. Pharmaceuticals (Basel). 2021;14(5):1–20. doi: 10.3390/ph14050488
  • World Health Organization. Global Vaccine Action Plan (2011-2020) [Internet]. 2013 [ cited 2023Jun 18]. Available from: https://www.who.int/teams/immunization-vaccines-and-biologicals/strategies/global-vaccine-action-plan
  • Rodrigues CMC, Plotkin SA. Impact of vaccines; health, economic and social perspectives. Front Microbiol. 2020;14:1–15. doi: 10.3389/fmicb.2020.01526
  • Edwards JE, Schwartz MM, Schmidt CS, et al. A fungal immunotherapeutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis-A phase 2 randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2018;66(12):1928–1936.
  • Ibrahim AS, Luo G, Gebremariam T, et al. NDV-3 protects mice from vulvovaginal candidiasis through T- and B-cell immune response. Vaccine. 2013;31(47):5549–5556. doi: 10.1016/j.vaccine.2013.09.016
  • Akhtar N, Joshi A, Kaushik V, et al. In-silico design of a multivalent epitope-based vaccine against Candida auris. Microb Pathog. 2021;155:1–9. doi: 10.1016/j.micpath.2021.104879
  • Singh S, Uppuluri P, Mamouei Z, et al. The NDV-3A vaccine protects mice from multidrug resistant Candida auris infection. PLOS Pathog. 2019;15(8):1–25.
  • Singh S, Barbarino A, Youssef EG, et al. Protective efficacy of anti-Hyr1p monoclonal antibody against systemic candidiasis due to multi-drug-resistant Candida auris. J Fungi (Basel). 2023;9(1):1–16.
  • Shukla M, Rohatgi S, Noverr MC. Vaccination with secreted aspartyl proteinase 2 protein from Candida parapsilosis can enhance survival of mice during C. tropicalis-mediated systemic candidiasis. Infect Immun. 2020;88(10):1–21. doi: 10.1128/IAI.00312-20
  • Gupta SK, Osmanoglu Ö, Minocha R, et al. Genome-wide scan for potential CD4+ T-cell vaccine candidates in Candida auris by exploiting reverse vaccinology and evolutionary information. Front Med. 2022;9:1–14. doi: 10.3389/fmed.2022.1008527
  • Bono C, Guerrero P, Jordán-Pla A, et al. GM-CSF programs hematopoietic stem and progenitor cells during Candida albicans vaccination for protection against reinfection. Front Immunol. 2021;12:1–17. doi: 10.3389/fimmu.2021.790309
  • Shen H, Yu Y, Chen SM, et al. Dectin-1 facilitates IL-18 production for the generation of protective antibodies against Candida albicans. Front Microbiol. 2020;11:1–16. doi: 10.3389/fmicb.2020.01648
  • Lilly EA, Bender BE, Esher Righi S, et al. Trained innate immunity induced by vaccination with low-virulence Candida species mediates protection against several forms of fungal sepsis via Ly6G+ Gr-1+ leukocytes. MBio. 2021;12(5):1–13. doi: 10.1128/mBio.02548-21
  • Martin-Cruz L, Sevilla-Ortega C, Benito-Villalvilla C, et al. A combination of polybacterial MV140 and Candida albicans V132 as a potential novel trained immunity-based vaccine for genitourinary tract infections. Front Immunol. 2021;11:1–14. doi: 10.3389/fimmu.2020.612269
  • Martín-Cruz L, Angelina A, Baydemir I, et al. Candida albicans V132 induces trained immunity and enhances the responses triggered by the polybacterial vaccine MV140 for genitourinary tract infections. Front Immunol. 2022;13:1–13. doi: 10.3389/fimmu.2022.1066383
  • Jin Z, Dong YT, Liu S, et al. Potential of polyethyleneimine as an adjuvant to prepare long-term and potent antifungal nanovaccine. Front Immunol. 2022;13:1–15. doi: 10.3389/fimmu.2022.843684
  • Vargas G, Honorato L, Guimarães AJ, et al. Protective effect of fungal extracellular vesicles against murine candidiasis. Cell Microbiol. 2020;22(10):1–28.
  • Xin H, Rosario-Colon JA, Eberle K, et al. Novel intravenous immunoglobulin therapy for the prevention and treatment of Candida auris and Candida albicans disseminated candidiasis. mSphere. 2023;8(1):1–12. doi: 10.1128/msphere.00584-22
  • Casadevall A, Pirofski L. Insights into mechanisms of antibody-mediated immunity from studies with Cryptococcus neoformans. Curr Mol Med. 2005;5(4):421–433. doi: 10.2174/1566524054022567
  • Upadhya R, Lam WC, Maybruck B, et al. Induction of protective immunity to cryptococcal infection in mice by a heat-killed, chitosan-deficient strain of Cryptococcus neoformans. MBio. 2016;7(3):1–14. doi: 10.1128/mBio.00547-16
  • Wang Y, Wang K, Masso-Silva JA, et al. A heat-killed cryptococcus mutant strain induces host protection against Multiple invasive mycoses in a murine vaccine model. MBio. 2019;10(6):1–18. doi: 10.1128/mBio.02145-19
  • Ueno K, Yanagihara N, Shimizu K, et al. Vaccines and protective immune memory against Cryptococcosis. Biol Pharm Bull. 2020;43(2):230–239.
  • Hester MM, Lee CK, Abraham A, et al. Protection of mice against experimental cryptococcosis using glucan particle-based vaccines containing novel recombinant antigens. Vaccine. 2020;38(3):620–626. doi: 10.1016/j.vaccine.2019.10.051
  • Wang R, Oliveira LVN, Lourenco D, et al. Immunological correlates of protection following vaccination with glucan particles containing cryptococcus neoformans chitin deacetylases. NPJ Vaccines. 2023;8(1):1–11. doi: 10.1038/s41541-023-00606-0
  • Soto ER, Specht CA, Rus F, et al. An efficient (nano) silica - in glucan particles protein encapsulation approach for improved thermal stability. J Control Release. 2023;357:175–184. doi: 10.1016/j.jconrel.2023.03.027
  • Hole CR, Wager CML, Castro-Lopez N, et al. Induction of memory-like dendritic cell responses in vivo. Nat Commun. 2019;10(1):1–13.
  • Zhai B, Wozniak KL, Masso-Silva J, et al. Development of protective inflammation and cell-mediated immunity against cryptococcus neoformans after exposure to hyphal mutants. MBio. 2015;6(5):1–13. doi: 10.1128/mBio.01433-15
  • Upadhya R, Lam WC, Hole CR, et al. Cryptococcus neoformans Cda1 and Cda2 coordinate deacetylation of chitin during infection to control fungal virulence. Cell Surf. 2021;7:1–9. doi: 10.1016/j.tcsw.2021.100066
  • Specht CA, Jane Homan E, Lee CK, et al. Protection of mice against experimental cryptococcosis by synthesized peptides delivered in glucan particles. MBio. 2021;13(1):1–11.
  • Soto ER, Specht CA, Lee CK, et al. One step purification-vaccine delivery system. Pharmaceutics. 2023;15(5):1–11.
  • Rayens E, Rabacal W, Willems HME, et al. Immunogenicity and protective efficacy of a pan-fungal vaccine in preclinical models of aspergillosis, candidiasis, and pneumocystosis. PNAS Nexus. 2022;1(5):1–15.
  • Cenci E, Mencacci A, Bacci A, et al. T cell vaccination in mice with invasive pulmonary aspergillosis. J Immunol. 2000;165(1):381–388.
  • Namvar S, Warn P, Farnell E, et al. Aspergillus fumigatus proteases, Asp f 5 and Asp f 13, are essential for airway inflammation and remodelling in a murine inhalation model. Clin Exp Allergy. 2015;45(5):982–993. doi: 10.1111/cea.12426
  • Rivera A, Van Epps HL, Hohl TM, et al. Distinct CD4±T-cell responses to live and heat-inactivated Aspergillus fumigatus conidia. Infect Immun. 2005;73(11):7170–7179.
  • Clemons KV, Martinez M, Chen V, et al. Protection against experimental aspergillosis by heat-killed yeast is not antibody dependent. Med Mycol. 2014;52(4):422–426. doi: 10.1093/mmy/myt015
  • Fernandes CM, Normile TG, Fabri JHTM, et al. Vaccination with live or heat-killed Aspergillus fumigatus Δ sglA conidia fully protects immunocompromised mice from invasive aspergillosis. MBio. 2022;13(5):1–19.
  • Slarve M, Holznecht N, Reza H, et al. Recombinant Aspergillus fumigatus antigens Asp f 3 and Asp f 9 in liposomal vaccine protect mice against invasive pulmonary aspergillosis. Vaccine. 2022;40(31):4160–4168. doi: 10.1016/j.vaccine.2022.05.057
  • Chaturvedi AK, Kavishwar A, Keshava GBS, et al. Monoclonal immunoglobulin G1 directed against Aspergillus fumigatus cell wall glycoprotein protects against experimental murine aspergillosis. Clin Diagn Lab Immunol. 2005;12(9):1063–1068. doi: 10.1128/CDLI.12.9.1063-1068.2005
  • Bozza S, Perruccio K, Montagnoli C, et al. A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood. 2003;102(10):3807–3814. doi: 10.1182/blood-2003-03-0748
  • Perruccio K, Tosti A, Burchielli E, et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood. 2005;106(13):4397–4406. doi: 10.1182/blood-2005-05-1775
  • Deepe GS, Buesing WR, Ostroff GR, et al. Vaccination with an alkaline extract of Histoplasma capsulatum packaged in glucan particles confers protective immunity in mice. Vaccine. 2018;36(23):3359–3367. doi: 10.1016/j.vaccine.2018.04.047
  • Gomez AM, Rhodes JC, Deepe GS. Antigenicity and immunogenicity of an extract from the cell wall and cell membrane of histoplasma capsulatum yeast cells. Infect Immun. 1991;59(1):330–336. doi: 10.1128/iai.59.1.330-336.1991
  • Roth MT, Zamith-Miranda D, Nosanchuk JD. Immunization strategies for the control of histoplasmosis. Curr Trop Med Rep. 2019;6(2):35–41. doi: 10.1007/s40475-019-00172-3
  • Deepe, Jr GS, Gibbons RS. Cellular and molecular regulation of vaccination with heat shock protein 60 from Histoplasma capsulatum. Infect Immun. 2002;70(7):3759–3767. doi: 10.1128/IAI.70.7.3759-3767.2002
  • Guimaraes AJ, Frases S, Gomez FJ, et al. Monoclonal antibodies to heat shock protein 60 alter the pathogenesis of histoplasma capsulatum. Infect Immun. 2009;77(4):1357–1367.
  • Nosanchuk JD, Zancopé-Oliveira RM, Hamilton AJ, et al. Antibody therapy for histoplasmosis. Front Microbiol. 2012;3:1–7. doi: 10.3389/fmicb.2012.00021
  • Awasthi S, Vilekar P, Conkleton A, et al. Dendritic cell-based immunization induces Coccidioides Ag2/PRA-specific immune response. Vaccine. 2019;37(12):1685–1691. doi: 10.1016/j.vaccine.2019.01.034
  • Narra HP, Shubitz LF, Mandel MA, et al. A Coccidioides posadasii CPS1 Deletion Mutant Is Avirulent and Protects Mice from Lethal Infection. Infect Immun. 2016;84(10):3007–3016.
  • Shubitz LF, Robb EJ, Powell DA, et al. Δcps1 vaccine protects dogs against experimentally induced coccidioidomycosis. Vaccine. 2021;39(47):6894–6901. doi: 10.1016/j.vaccine.2021.10.029
  • Travassos LR, Taborda CP. Linear epitopes of Paracoccidioides brasiliensis and other fungal agents of human systemic mycoses as vaccine candidates. Front Immunol. 2017;8:1–11. doi: 10.3389/fimmu.2017.00224
  • Boniche C, Rossi SA, Kischkel B, et al. Immunotherapy against systemic fungal infections based on monoclonal antibodies. J Fungi (Basel). 2020;6(1):1–28.
  • Bueno RA, Thomaz L, Muñoz JE, et al. Antibodies against glycolipids enhance antifungal activity of macrophages and reduce fungal burden after infection with Paracoccidioides brasiliensis. Front Microbiol. 2016;7:1–10. doi: 10.3389/fmicb.2016.00074
  • Boniche-Alfaro C, Kischkel B, Thomaz L, et al. Antibody- based immunotherapy combined with antimycotic drug TMP- SMX to treat infection with Paracoccidioides brasiliensis. Front Immunol. 2021;12:1–12. doi: 10.3389/fimmu.2021.725882
  • Braga CJM, Rittner GMG, Henao JEM, et al. Paracoccidioides brasiliensis Vaccine Formulations Based on the gp43-Derived P10 Sequence and the Salmonella enterica FliC Flagellin. Infect Immun. 2009;77(4):1700–1707. doi: 10.1128/IAI.01470-08
  • de Amorim J, Magalhães A, Muñoz JE, et al. DNA vaccine encoding peptide P10 against experimental paracoccidioidomycosis induces long-term protection in presence of regulatory T cells. Microbes Infect. 2013;15(3):181–191.
  • Rittner GMG, Muñoz JE, Marques AF, et al. Therapeutic DNA vaccine encoding peptide P10 against experimental paracoccidioidomycosis. PLoS Negl Trop Dis. 2012;6(2):1–9.
  • Malonis RJ, Lai JR, Vergnolle O. Peptide-based vaccines: current progress and future challenges. Chem Rev. 2020;120(6):3210–3229. doi: 10.1021/acs.chemrev.9b00472
  • Amaral AC, Marques AF, Muñoz JE, et al. Poly (lactic acid-glycolic acid) nanoparticles markedly improve immunological protection provided by peptide P10 against murine paracoccidioidomycosis. Br J Pharmacol. 2010;159(5):1126–1132.
  • Mayorga O, Muñoz JE, Lincopan N, et al. The role of adjuvants in therapeutic protection against paracoccidioidomycosis after immunization with the P10 peptide. Front Microbiol. 2012;3:1–6. doi: 10.3389/fmicb.2012.00154
  • de Araújo MV, Santos Júnior S, Júnior SR Dos JD, et al. Therapeutic vaccination with cationic liposomes formulated with dioctadecyldimethylammonium and trehalose dibehenate (CAF01) and peptide P10 is protective in mice infected with Paracoccidioides brasiliensis. J Fungi (Basel). 2020;6(4):1–16.
  • Holanda RA, Muñoz JE, Dias LS, et al. Recombinant vaccines of a CD4+ T-cell epitope promote efficient control of paracoccidioides brasiliensis burden by restraining primary organ infection. PLoS Negl Trop Dis. 2017;11(9):1–20.
  • Junior SR Dos S, Kelley Lopes da Silva, da Silva FKL LS, et al. Intranasal vaccine using P10 peptide complexed within chitosan polymeric nanoparticles as experimental therapy for paracoccidioidomycosis in murine model. J Fungi (Basel). 2020;6(3):1–14.
  • Júnior SR Dos S, Barbalho FV, Nosanchuk JD, et al. Biodistribution and adjuvant effect of an intranasal vaccine based on Chitosan nanoparticles against Paracoccidioidomycosis. J Fungi (Basel). 2023;9(2):1–18.
  • Magalhães A, Ferreira KS, Almeida SR, et al. Prophylactic and therapeutic vaccination using dendritic cells primed with peptide 10 derived from the 43-kilodalton glycoprotein of Paracoccidioides brasiliensis. Clin Vaccine Immunol. 2012;19(1):23–29. doi: 10.1128/CVI.05414-11
  • Silva LBR, Dias LS, Rittner GMG, et al. Dendritic Cells Primed with Paracoccidioides brasiliensis Peptide P10 Are Therapeutic in Immunosuppressed Mice with Paracoccidioidomycosis. Front Microbiol. 2017;8:1–10. doi: 10.3389/fmicb.2017.01057
  • De Almeida JN, Del Negro GMB, Grenfell RC, et al. Matrix-assisted laser desorption ionization–time of flight mass spectrometry for differentiation of the dimorphic fungal species Paracoccidioides brasiliensis and Paracoccidioides lutzii. J Clin Microbiol. 2015;53(4):1383–1386.
  • De Almeida JRF, Jannuzzi GP, Kaihami GH, et al. An immunoproteomic approach revealing peptides from Sporothrix brasiliensis that induce a cellular immune response in subcutaneous sporotrichosis. Sci Rep. 2018;8(1):1–11. doi: 10.1038/s41598-018-22709-8
  • Portuondo DL, Batista-Duharte A, Ferreira LS, et al. A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection. Immunobiology. 2016;221(2):300–309. doi: 10.1016/j.imbio.2015.10.005
  • Portuondo DL, Dores-Silva PR, Ferreira LS, et al. Immunization with recombinant enolase of sporothrix spp. (rSseno) confers effective protection against sporotrichosis in mice. Sci Rep. 2019;9(1):1–14. doi: 10.1038/s41598-019-53135-z
  • Téllez-Martínez D, Portuondo DL, Loesch ML, et al. A recombinant Enolase-MontanideTM PetGel a vaccine promotes a protective Th1 immune response against a highly virulent Sporothrix schenckii by toluene exposure. Pharmaceutics. 2019;11(3):1–13.
  • Eddens T, Elsegeiny W, Ricks D, et al. Transcriptomic and proteomic approaches to finding novel diagnostic and immunogenic candidates in Pneumocystis. mSphere. 2019;4(5):1–13. doi: 10.1128/mSphere.00488-19
  • Fan H, Guo JY, Ma SL, et al. Synthetic p55 tandem DNA vaccine against Pneumocystis carinii in rats. Microbiol Immunol. 2016;60(6):397–406.
  • Tesini BL, Wright TW, Malone JE, et al. Immunization with Pneumocystis cross-reactive antigen 1 (Pca1) protects mice against Pneumocystis pneumonia and generates antibody to Pneumocystis jirovecii. Infect Immun. 2017;85(4):1–8.
  • Tong T, Wang Z, Xu Y, et al. Immunization with Pneumocystis carinii A121–85 antigen activates immune function against P. carinii. BMC Immunol. 2021;22(1):1–8. doi: 10.1186/s12865-021-00436-6
  • Cobos Jiménez V, Rabacal W, Rayens E, et al. Immunization with Pneumocystis recombinant KEX1 induces robust and durable humoral responses in immunocompromised non-human primates. Hum Vaccin Immunother. 2019;15(9):2075–2080.
  • Rabacal W, Schweitzer F, Kling HM, et al. A therapeutic vaccine strategy to prevent pneumocystis pneumonia in an immunocompromised host in a non-human primate model of HIV and Pneumocystis co-infection. Front Immunol. 2022;13:1–13. doi: 10.3389/fimmu.2022.1036658
  • Samuelson DR, de la Rua NM, Charles TP, et al. Oral immunization of mice with live Pneumocystis murina protects against Pneumocystis pneumonia. J Immunol. 2016;196(6):2655–2665. doi: 10.4049/jimmunol.1502004
  • Soltan MA, Eldeen MA, Elbassiouny N, et al. In silico designing of a multitope vaccine against Rhizopus microsporus with potential activity against other mucormycosis causing fungi. Cells. 2021;10(11):1–25.
  • Naveed M, Ali U, Karobari MI, et al. A vaccine construction against COVID-19-Associated mucormycosis contrived with immunoinformatics-based scavenging of potential Mucoralean Epitopes. Vaccines (Basel). 2022;10(5):1–22. doi: 10.3390/vaccines10050664
  • Guinea J. Global trends in the distribution of candida species causing candidemia. Clin Microbiol Infect. 2014;20(Suppl 6):5–10. doi: 10.1111/1469-0691.12539
  • Dadar M, Tiwari R, Karthik K, et al. Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control - An update. Microb Pathog. 2018;117:128–138. doi: 10.1016/j.micpath.2018.02.028
  • McCarty TP, White CM, Pappas PG. Candidemia and invasive candidiasis. Infect Dis Clin North Am. 2021;35(2):389–413. doi: 10.1016/j.idc.2021.03.007
  • Ahmadipour S, Field RA, Miller GJ. Prospects for anti- Candida therapy through targeting the cell wall: a mini-review. Cell Surf. 2021;7:1–8. doi: 10.1016/j.tcsw.2021.100063
  • Singh S, Nabeela S, Barbarino A, et al. Antibodies targeting Candida albicans Als3 and Hyr1 antigens protect neonatal mice from candidiasis. Front Immunol. 2022;13:1–9. doi: 10.3389/fimmu.2022.925821
  • Akhtar N, Singh A, Upadhyay AK, et al. Design of a multi-epitope vaccine against the pathogenic fungi Candida tropicalis using an in silico approach. J Genet Eng Biotechnol. 2022;20(1):1–15.
  • Akhtar N, Magdaleno JSL, Ranjan S, et al. Secreted aspartyl proteinases targeted multi-epitope vaccine design for Candida dubliniensis using immunoinformatics. Vaccines (Basel). 2023;11(2):1–14. doi: 10.3390/vaccines11020364
  • Alqarihi A, Singh S, Edwards JE, et al. NDV-3A vaccination prevents C. albicans colonization of jugular vein catheters in mice. Sci Rep. 2019;9(1):1–6. doi: 10.1038/s41598-019-42517-y
  • Uppuluri P, Singh S, Alqarihi A, et al. Human anti-Als3p antibodies are surrogate markers of NDV-3A vaccine efficacy against recurrent vulvovaginal candidiasis. Front Immunol. 2018;9:1–10. doi: 10.3389/fimmu.2018.01349
  • Kamli MR, Sabir JSM, Malik MA, et al. Characterization of the secretome of pathogenic Candida glabrata and their effectiveness against systemic candidiasis in BALB/c mice for vaccine development. Pharmaceutics. 2022;14(10):1–17. doi: 10.3390/pharmaceutics14101989
  • Khan T, Suleman M, Ali SS, et al. Subtractive proteomics assisted therapeutic targets mining and designing ensemble vaccine against Candida auris for immune response induction. Comput Biol Med. 2022;145:1–12. doi: 10.1016/j.compbiomed.2022.105462
  • Rajasingham R, Govender NP, Jordan A, et al. The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis. Lancet Infect Dis. 2022;22(12):1748–1755.
  • Devi SJN, Schneerson R, Egan W, et al. Cryptococcus neoformans serotype a glucuronoxylomannan-protein conjugate vaccines: synthesis, characterization, and immunogenicity. Infect Immun. 1991;59(10):3700–3707. doi: 10.1128/iai.59.10.3700-3707.1991
  • Devi SJN. Preclinical efficacy of a glucuronoxylomannan-tetanus toxoid conjugate vaccine of Cryptococcus neoformans in a murine model. Vaccine. 1996;14(9):841–844. doi: 10.1016/0264-410x(95)00256-z
  • Datta K, Lees A, Pirofski LA. Therapeutic Efficacy of a Conjugate Vaccine Containing a Peptide Mimotope of Cryptococcal Capsular Polysaccharide Glucuronoxylomannan. Clin Vaccine Immunol. 2008;15(8):1176–1187. doi: 10.1128/CVI.00130-08
  • Caroline Colombo A, Rella A, Normile T, et al. Cryptococcus neoformans glucuronoxylomannan and sterylglucoside are required for host protection in an animal vaccination model. MBio. 2019;10(2):1–22.
  • Rizzo J, Wong SSW, Gazi AD, et al. Cryptococcus extracellular vesicles properties and their use as vaccine platforms. J Extracell Vesicles. 2021;10(10):1–19.
  • Oliveira LVN, Wang R, Specht CA, et al. Vaccines for human fungal diseases: close but still a long way to go. NPJ Vaccines. 2021;6(1):1–8. doi: 10.1038/s41541-021-00294-8
  • Specht CA, Lee CK, Huang H, et al. Vaccination with recombinant Cryptococcus proteins in glucan particles protects mice against cryptococcosis in a manner dependent upon mouse strain and cryptococcal species. MBio. 2017;8(6):1–14. doi: 10.1128/mBio.01872-17
  • Wormley FL, Perfect JR, Steele C, et al. Protection against cryptococcosis by using a murine gamma interferon-producing Cryptococcus neoformans strain. Infect Immun. 2007;75(3):1453–1462. doi: 10.1128/IAI.00274-06
  • Ueno K, Urai M, Sadamoto S, et al. A dendritic cell-based systemic vaccine induces long-lived lung-resident memory Th17 cells and ameliorates pulmonary mycosis. Mucosal Immunol. 2018;12(1):265–276.
  • Krüger T, Luo T, Schmidt H, et al. Challenges and strategies for proteome analysis of the interaction of human pathogenic fungi with host immune cells. Proteomes. 2015;3(4):467–495. doi: 10.3390/proteomes3040467
  • Mead ME, Knowles SL, Raja HA, et al. Characterizing the pathogenic, genomic, and chemical traits of Aspergillus fischeri, a close relative of the major human fungal pathogen Aspergillus fumigatus. mSphere. 2019;4(1):1–18. doi: 10.1128/mSphere.00018-19
  • Levitz SM. Aspergillus vaccines: hardly worth studying or worthy of hard study? Med Mycol. 2017;55(1):103–108. doi: 10.1093/mmy/myw081
  • Torosantucci A, Bromuro C, Chiani P, et al. A novel glyco-conjugate vaccine against fungal pathogens. J Exp Med. 2005;202(5):597–606.
  • Kniemeyer O, Ebel F, Krüger T, et al. Immunoproteomics of Aspergillus for the development of biomarkers and immunotherapies. Proteomics Clin Appl. 2016;10(9–10):910–921.
  • Levitz SM, Huang H, Ostroff GR, et al. Exploiting fungal cell wall components in vaccines. Semin Immunopathol. 2015;37(2):199–207. doi: 10.1007/s00281-014-0460-6
  • Eraso IC, Sangiovanni S, Morales EI, et al. Use of monoclonal antibodies for allergic bronchopulmonary aspergillosis in patients with asthma and cystic fibrosis: literature review. Ther Adv Respir Dis. 2020;14:1–16. doi: 10.1177/1753466620961648
  • Ansari S, Mousavi A, Safarnejad MR, et al. Selection and characterization of two monoclonal antibodies specific for the Aspergillus flavus major antigenic cell wall protein Aflmp1. Fungal Biol. 2021;125(8):621–629.
  • Wang R, Wan Z, Li R. Th and Treg response induced by Aspergillus fumigatus pulsed dendritic cells in vitro. Chin Med J (Engl). 2014;127(20):3616–3622.
  • Pattison HT, Millar BC, Moore JE. Fungal vaccines. Br J Biomed Sci. 2021;78(4):167–176. doi: 10.1080/09674845.2021.1907953
  • Da Silva LBR, Taborda CP, Nosanchuk JD. Advances in Fungal Peptide Vaccines. Journal Of Fungi. 2020;6(3):1–18. doi: 10.3390/jof6030119
  • Araúz AB, Papineni PIDCNA. Histoplasmosis. Infect Dis Clin North Am. 2021;35(2):471–491. doi: 10.1016/j.idc.2021.03.011
  • Deepe GS. Preventive and therapeutic vaccines for fungal infections: from concept to implementation. Expert Rev Vaccines. 2004;3(6):701–709. doi: 10.1586/14760584.3.6.701
  • Deepe GS, Durose GG. Immunobiological Activity of Recombinant H Antigen from Histoplasma capsulatum. Infect Immun. 1995;63(8):3151–3157. doi: 10.1128/iai.63.8.3151-3157.1995
  • Kischkel B, Boniche-Alfaro C, de G MI, et al. Immunoproteomic and Immunopeptidomic Analyses of Histoplasma capsulatum Reveal Promiscuous and Conserved Epitopes Among Fungi With Vaccine Potential. Front Immunol. 2021;12:1–20. doi: 10.3389/fimmu.2021.764501
  • Almeida PCS, Roque BS, Felice AG, et al. Comparative Genomics of Histoplasma capsulatum and prediction of new vaccines and drug targets. J Fungi (Basel). 2023;9(2):1–14.
  • Centers for Disease Control and Prevention. Valley Fever (Coccidioidomycosis) Statistics [Internet]. USA. 2022 [cited 2023 Jun 23]. Available from: World Health Organization. WHO fungal priority pathogens list to guide research, development and public health action [Internet]. Geneva. 2022 [cited 2023 Jun 18]. Available from: https://www.cdc.gov/fungal/diseases/coccidioidomycosis/statistics.html#:~:text=On%20average%2C%20there%20were%20approximately,Multiple%20Cause%20of%20Death%20data.
  • Sondermeyer GL, Lee LA, Gilliss D, et al. Coccidioidomycosis-Associated Deaths in California, 2000–2013. Public Health Rep. 2016;131(4):531–535.
  • Kong YC, Levine HB. Experimentally induced immunity in the mycoses. Bacteriol Rev. 1967;31(1):35–53. doi: 10.1128/br.31.1.35-53.1967
  • Pappagianis D. Evaluation of the protective efficacy of the killed Coccidioides immitis spherule vaccine in humans. The Valley fever vaccine study group. Am Rev Respir Dis. 1993;148(3):656–660. doi: 10.1164/ajrccm/148.3.656
  • Zimmermann CR, Johnson SM, Martens GW, et al. Protection against lethal murine coccidioidomycosis by a soluble vaccine from spherules. Infect Immun. 1998;66(5):2342–2345. doi: 10.1128/IAI.66.5.2342-2345.1998
  • Cox RA, DM M. Coccidioidomycosis: Host Response and Vaccine Development. Clin Microbiol Rev. 2004;17(4):804–839. doi: 10.1128/CMR.17.4.804-839.2004
  • Orsborn KI, Shubitz LF, Peng T, et al. Protein expression profiling of Coccidioides posadasii by two-dimensional differential in-Gel electrophoresis and evaluation of a newly recognized peroxisomal matrix protein as a recombinant vaccine candidate. Infect Immun. 2006;74(3):1865–1872. doi: 10.1128/IAI.74.3.1865-1872.2006
  • Pan S, Cole GT. Molecular and biochemical characterization of a Coccidioides immitis-specific antigen. Infect Immun. 1995;63(10):3994–4002. doi: 10.1128/iai.63.10.3994-4002.1995
  • Hayden CA, Hung CY, Zhang H, et al. Maize-produced Ag2 as a subunit vaccine for Valley fever. J Infect Dis. 2019;220(4):615–623.
  • Hayden CA, Landrock D, Hung CY, et al. Co-administration of injected and oral vaccine candidates elicits improved immune responses over either route alone. Vaccines (Basel). 2020;8(1):1–13. doi: 10.3390/vaccines8010037
  • Castro-Lopez N, Hung CY. Immune response to coccidioidomycosis and the development of a vaccine. Microorganisms. 2017;5(1):1–14. doi: 10.3390/microorganisms5010013
  • Shubitz LF, Powell DA, Trinh HT, et al. Viable spores of Coccidioides posadasii Δcps1 are required for vaccination and provide long lasting immunity. Vaccine. 2018;36(23):3375–3380. doi: 10.1016/j.vaccine.2018.04.026
  • Powell DA, Hsu AP, Butkiewicz CD, et al. Vaccine protection of mice with primary immunodeficiencies against disseminated coccidioidomycosis. Front Cell Infect Microbiol. 2022;11:1–6. doi: 10.3389/fcimb.2021.790488
  • Hurtgen BJ, Castro-Lopez N, Del P J-AM, et al. Preclinical identification of vaccine induced protective correlates in human leukocyte antigen expressing transgenic mice infected with Coccidioides posadasii. Vaccine. 2016;34(44):5336–5343.
  • Martinez R. New trends in paracoccidioidomycosis epidemiology. J Fungi (Basel). 2017;3(1):1–13. doi: 10.3390/jof3010001
  • Prado M, da Silva MB, Laurenti R, et al. Mortality due to systemic mycoses as a primary cause of death or in association with AIDS in Brazil: a review from 1996 to 2006. Mem Inst Oswaldo Cruz. 2009;104(3):513–521.
  • Shikanai-Yasuda MA, Mendes RP, Colombo AL, et al. Brazilian guidelines for the clinical management of paracoccidioidomycosis. Rev Soc Bras Med Trop. 2017;50(5):715–740.
  • Mattos Grosso D D, De Almeida SR, Mariano M, et al. Characterization of gp70 and anti-gp70 monoclonal antibodies in Paracoccidioides brasiliensis pathogenesis. Infect Immun. 2003;71(11):6534–6542.
  • Thomaz L, Nosanchuk JD, Rossi DCP, et al. Monoclonal antibodies to heat shock protein 60 induce a protective immune response against experimental Paracoccidioides lutzii. Microbes Infect. 2014;16(9):788–795.
  • Silva LBR, Taira CL, Cleare LG, et al. Identification of Potentially Therapeutic Immunogenic Peptides From Paracoccidioides lutzii Species. Front Immunol. 2021;12:1–14. doi: 10.3389/fimmu.2021.670992
  • Buissa-Filho R, Puccia R, Marques AF, et al. The monoclonal antibody against the major diagnostic antigen of Paracoccidioides brasiliensis mediates immune protection in infected BALB/c mice challenged intratracheally with the fungus. Infect Immun. 2008;76(7):3321–3328.
  • Taborda CP, Juliano MA, Puccia R, et al. Mapping of the T-cell epitope in the major 43-kilodalton glycoprotein of Paracoccidioides brasiliensis which induces a th-1 response protective against fungal infection in BALB/c mice. Infect Immun. 1998;66(2):786–793. doi: 10.1128/IAI.66.2.786-793.1998
  • Marques AF, Da Silva MB, Juliano MAP, et al. Peptide immunization as an adjuvant to chemotherapy in mice challenged intratracheally with virulent yeast cells of Paracoccidioides brasiliensis. Antimicrob Agents Chemother. 2006;50(8):2814–2819. doi: 10.1128/AAC.00220-06
  • Li W, Joshi MD, Singhania S, et al. Peptide vaccine: progress and challenges. Vaccines (Basel). 2014;2(3):515–536.
  • Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release. 2014;190:189–200. doi: 10.1016/j.jconrel.2014.05.003
  • Garg A, Dewangan HK. Nanoparticles as adjuvants in vaccine delivery. Crit Rev Ther Drug Carrier Syst. 2020;37(2):183–204. doi: 10.1615/CritRevTherDrugCarrierSyst.2020033273
  • Eisenbarth SC. Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol. 2019;19(2):89–103. doi: 10.1038/s41577-018-0088-1
  • Ferreira KS, Bastos KR, Russo M, et al. Interaction between Paracoccidioides brasiliensis and pulmonary dendritic cells induces interleukin-10 production and toll-like receptor-2 expression: possible mechanisms of susceptibility. J Infect Dis. 2007;196(7):1108–1115.
  • Travassos LR, Taborda CP. New advances in the development of a vaccine against paracoccidioidomycosis. Front Microbiol. 2012;3:1–6. doi: 10.3389/fmicb.2012.00212
  • Jannuzzi GP, de Almeida JRF, dos Santos SS, et al. Notch signaling is required for dendritic cell maturation and T cell expansion in paracoccidioidomycosis. Mycopathologia. 2018;183(5):739–749. doi: 10.1007/s11046-018-0276-3
  • Silva LBR, Taira CL, Dias LS, et al. Experimental therapy of paracoccidioidomycosis using p10-primed monocyte-derived dendritic cells isolated from infected mice. Front Microbiol. 2019;10:1–12. doi: 10.3389/fmicb.2019.01727
  • Puccia R, McEwen JG, Cisalpino PS. Diversity in Paracoccidioides brasiliensis. The PbGP43 gene as a genetic marker. Mycopathologia. 2008;165(4–5):275–287. doi: 10.1007/s11046-007-9055-2
  • Rodrigues AM, Kubitschek-Barreira PH, Pinheiro BG, et al. Immunoproteomic analysis reveals novel candidate antigens for the diagnosis of paracoccidioidomycosis due to Paracoccidioides lutzii. J Fungi (Basel). 2020;6(4):1–36.
  • Leitão NP, Vallejo MC, Conceição PM, et al. Paracoccidioides lutzii Plp43 is an active glucanase with partial antigenic identity with P. brasiliensis gp43. PLoS Negl Trop Dis. 2014;8(8):1–9.
  • Matute DR, McEwen JG, Puccia R, et al. Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies. Mol Biol Evol. 2006;23(1):65–73.
  • de Oliveira LBZ, Della Coletta AM, Gardizani TP, et al. Molecular Phylogenetic Analysis of Paracoccidioides Species Complex Present in Paracoccidioidomycosis Patient Tissue Samples. Microorganisms. 2023;11(3):1–13. doi: 10.3390/microorganisms11030562
  • Rodrigues AM, Gonçalves SS, de CJ, et al. Current progress on epidemiology, diagnosis, and treatment of sporotrichosis and their future trends. J Fungi (Basel). 2022;8(8):1–32.
  • Rodrigues AM, Sybren De Hoog G, Pires De Camargo Z, et al. Sporothrix Species Causing Outbreaks in Animals and Humans Driven by Animal–Animal Transmission. 2016;12(7):1–7.
  • Zhang Y, Hagen F, Stielow B, et al. Phylogeography and evolutionary patterns in Sporothrix spanning more than 14 000 human and animal case reports. Persoonia. 2015;35:1–20. doi: 10.3767/003158515X687416
  • Scott EN, Muchmore HG. Immunoblot analysis of antibody responses to Sporothrix schenckii. J Clin Microbiol. 1989;27(2):300–304. doi: 10.1128/jcm.27.2.300-304.1989
  • Rodrigues AM, Fernandes GF, Araujo LM, et al. Proteomics-based characterization of the humoral immune response in sporotrichosis: toward discovery of potential diagnostic and vaccine antigens. PLoS Negl Trop Dis. 2015;9(8):1–18.
  • De Almeida JRF, Kaihami GH, Jannuzzi GP, et al. Therapeutic vaccine using a monoclonal antibody against a 70-kDa glycoprotein in mice infected with highly virulent Sporothrix schenckii and Sporothrix brasiliensis. Med Mycol. 2015;53(1):42–50.
  • Saba C. Vaccine-associated feline sarcoma: current perspectives. Vet Med. 2017;8:13–20. doi: 10.2147/VMRR.S116556
  • Portuondo DL, Batista-Duharte A, Ferreira LS, et al. Comparative efficacy and toxicity of two vaccine candidates against Sporothrix schenckii using either MontanideTM Pet Gel A or aluminum hydroxide adjuvants in mice. Vaccine. 2017;35(34):4430–4436.
  • Batista-Duharte A, Téllez-Martínez D, Portuondo DL, et al. Selective depletion of regulatory T cells enhances the immunogenicity of a recombinant-based vaccine against Sporothrix spp. Front Cell Infect Microbiol. 2023;12:1–9. doi: 10.3389/fcimb.2022.1084526
  • Kling HM, Norris KA. Vaccine-induced immunogenicity and protection against Pneumocystis pneumonia in a nonhuman Primate model of HIV and Pneumocystis coinfection. J Infect Dis. 2016;213(10):1586–1595. doi: 10.1093/infdis/jiw032
  • Spellberg B, Edwards J, Ibrahim A. Novel perspectives on mucormycosis: pathophysiology, presentation, and management. Clin Microbiol Rev. 2005;18(3):556–569. doi: 10.1128/CMR.18.3.556-569.2005
  • Tabassum T, Araf Y, Moin AT, et al. COVID-19-associated-mucormycosis: possible role of free iron uptake and immunosuppression. Mol Biol Rep. 2022;49(1):747–754. doi: 10.1007/s11033-021-06862-4
  • Araf Y, Moin AT, Timofeev VI, et al. Immunoinformatic design of a multivalent peptide vaccine against Mucormycosis: targeting FTR1 protein of major causative fungi. Front Immunol. 2022;13:1–16. doi: 10.3389/fimmu.2022.863234